Polytropic Head for a Centrifugal Compressor

SI Units:

$$H_{poly} = \frac{8314}{MW} \times T_1 \times Z_{avg} \times \left(\frac{n}{n-1}\right) \times \left[\left(\frac{P_2}{P_1}\right)^{(n-1)/n} - 1\right]$$

where:

- H_{poly} = Polytropic head, N-m/kg
- MW = molecular weight of the gas, kg/kg-mol
- T₁ = Absolute temperature at inlet conditions, K
- $Z_{avg} =$ Average compressibility factor, dimensionless = (Z₁+Z₂) / 2
- Z₁ = Compressibility factor at inlet conditions, dimensionless
- Z₂ = Compressibility factor at discharge conditions, dimensionless
- P₁ = Inlet pressure in absolute units, kPaa or bara
- P₂ = Discharge pressure in absolute units, kPaa or bara
- n = polytropic exponent

US Customary units

$$H_{poly} = \frac{1545}{MW} \times T_1 \times Z_{avg} \times \left(\frac{n}{n-1}\right) \times \left[\left(\frac{P_2}{P_1}\right)^{(n-1)/n} - 1\right]$$

- $\begin{array}{ll} H_{poly} = & \mbox{Polytropic head, ft-lb}_{f}/lb_{m} \\ MW = & \mbox{molecular weight of the gas, lb/lb-mol} \\ T_{1} = & \mbox{Absolute temperature at inlet conditions, R} \\ Z_{avg} = & \mbox{Average compressibility factor, dimensionless} \\ &= (Z_{1} + Z_{2}) / 2 \\ Z_{1} = & \mbox{Compressibility factor at inlet conditions, dimensionless} \end{array}$
- Z₂ = Compressibility factor at discharge conditions, dimensionless
- P₁ = Inlet pressure in absolute units, psia
- P₂ = Discharge pressure in absolute units, psia

Centrifugal Compressor Performance SI Units

Impeller Flow Coefficients

$$\phi = \frac{V_{inlet}}{u_2 \times d_2^2}$$

where:

u₂ = impeller tip speed in m/s

d₂ = impeller diameter in m

Note: Impeller flow coefficients shall be within the 0.01 to 0.12 range

Impeller Stage Head Coefficients SI Units

$$\mu = \frac{H_{poly}}{u_2^2}$$

where:

Note: Impeller stage head coefficients shall be within the 0.4 to 0.55 range. For preliminary calculations an initial value of 0.48 is recommended.

Approximate Rotational Speed SI Units

$$N = \frac{u_2 \times 60}{\pi \times d_2}$$

where: N =

approximate rotational speed, rpm

US Cust Units

ф —	$V_{inlet} \times 144$	
φ	_	$u_2 \times d_2^2$

φ =	impeller flow coefficient, dimensionless
V _{inlet} =	compressor inlet volume flow in ft ³ /s

 $u_2 =$ impeller tip speed in ft/s

d₂ = impeller diameter in inch

US Cust Units

	μ =	$H_{poly} \times 32.2$
		<u><u>u</u>₂²</u>
μ	=	Head Coefficie

Head Coefficient, dimensionless

 H_{poly} = Polytropic head **per stage**, ft-lb_f/lb_m

US Cust Units

$$N = \frac{u_2 \times 60 \times 12}{\pi \times d_2}$$

N = approximate rotational speed, rpm

Revision: 0 Prepared By: Checked By: Approved By

SI Units

Inputs:

Inlet Pr., P₁ Inlet Temp., T₁ Disch. Pr., P₂ Mass flow, M 2.068 bar(abs) 40 °C 6.89 bar(abs) 136,078.0 kg/h

=Input Values =Calculated Values

Calculations:

Component	mole fraction	Component	Pseudo-Critical	Component	Pseudo-	Component	Pseudo-	Specific	Pseudo-
		Critical	Press., P _{pc} ,	Critical	Critical	Molecular	Molecular	Heat at	Specific Heat
		Press., kPa	kPa (abs)	Temp., K	Temp.,	Wt.	wt., MW	const.	at const.
		(abs)			T _{pc} , K			press., C _{p.}	press., C _{p.}
								kJ/kg-K	kJ/kg-K
Ethane	0.05	4,880	244.0	305.41	15.27	30.07	1.50	1.7053	0.0853
Propane	0.8	4,240	3,392.0	369.77	295.82	44.097	35.28	1.6242	1.2994
n-Butane	0.15	3,784	567.6	425.1	63.77	58.123	8.72	1.6514	0.2477
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
	1		4,203.6		374.85		45.50		1.632

Inlet compressibility factor, $Z_1 =$ Specific Heat Ratio, $\kappa_1 = C_p / C_v$ Inlet volume flow **@P_1&T_1**, Q_1

(Calculated from "**Comp. Factor SI**" worksheet) C_p/(C_p-(8.314 / MW)) M*0.08314*(T₁+273.15)*Z₁ / P₁*MW

Table 1

Typical Centrifugal Compressor Frame Data

C

77 % 5,900 rpm

25,227 N-m / kg

Frame	Nominal Inle	t Volume flow	Nominal Po	olytropic head	Nominal	Nominal	Nominal Impe	ller Diameter
					Polytropic	Rotational		
					efficiency	Speed		-
	English (ICFM)	Metric (m ³ /h)	English (ft-	Metric (N-	(%)	(RPM)	English (inch)	Metric (mm)
			lb _f /lb _m)	m/kg)				
A	1,000-7,000	1,700-12,000	10,000	30,000	76	11,000	16	406
В	6,000-18,000	10,000-31,000	10,000	30,000	76	7,700	23	584
С	13,000-31,000	22,000-53,000	10,000	30,000	77	5,900	30	762
D	23,000-44,000	39,000-75,000	10,000	30,000	77	4,900	36	914
E	33,000-65,000	55,000-110,000	10,000	30,000	78	4,000	44	1,120
F	48,000-100,000	82,000-170,000	10,000	30,000	78	3,300	54	1,370
(Table reproduced from	Table reproduced from page 234 of "Pipeline Rules of Thumb Handbook" by E.W. McAllister, 3rd Ed., Gulf Publishing Company, Houston, TX)							

<u>Note</u>: Nominal polytropic head values have been calculated using the "Chart" worksheet and not referred from Table 1

Frame Selection
H _{poly-nom} =
$\eta_{poly} =$
N _{nom} =

(Select from Table 1 based on inlet volume flow) (from polynomial equation from **"Chart SI"** worksheet) (From Table 1) (FromTable 1)

Pr. Ratio, r _P =	
n/(n-1) =	
T ₂ =	

3.33 6.88 373.02 K **99.9** ℃

(Calculated from "Comp. Factor SI" worksheet) $(Z_1+Z_2)/2$

Average κ-value

The inlet κ value is generally used for polytropic head calculations. The polytropic head equation is insensitive to κ -value (and therefore n-value) within the limits that κ normally varies during compression. This is because any multiplier in the polytropic head equation tends to balance corresponding errors in the (n-1)/n exponent.

Number of Stages

Definition of Stage: For the purpose of this spreadsheet, a stage is defined as an impeller-diffuser pair. A series of stages will comprise a 'section' or 'process stage' between which there is no intercooling or loss or gain in flow (i.e. no sidestreams, bypassing or injection) & whose rotational speeds are in fixed ratio to each other.

DEP 31.29.40.10-Gen.: "Single section compressors with in-line impeller arrangements shall have no more than 9 impellers per casing. Two section compressors shall have no more than 8 impellers per casing. Compressors with one side-stream shall have a maximum of 7 impellers per casing, for each additional sidestream one additional impeller less in order to have sufficient space for adequate mixing of main & side streams."

Thus number of stages = Calculated polytropic head per stage =	2.9 3 23,990 N-m/kg	$(H_{poly}/H_{poly-nom})$ (Round-up to the next whole integer if calculated stages >X.2 & round-down if \leq X.2, where X = a whole integer)
Rotational Speed N _{nom} = Actual rotational speed =	5,900 rpm 5,754 rpm	N _{nom} *((H _{poly} /H _{poly-nom} *No. of Stages) ^{0.5})
Shaft Power P		

Shaft Power, P shaft

Gas Power Requirement, P_{gas} =

M*H_{poly}/(3.6E+6*η_{poly})

Table 2

Approximate Mechanical Losses as a Percentage of Gas Power Requirement

Gas Power Re	Mechanical Losses, Lm	
English (hp)	Metric (kW)	%
0-3,000	0-2,500	3
3,000-6,000	2,500-5,000	2.5
6,000-10,000	5,000-7,500	2
10,000+	7,500+	1.5

(Table reproduced from page 236 of "Pipeline Rules of Thumb Handbook" by E.W. McAllister, 3rd Ed., Gulf Publishing Company, Houston,TX)

3,533.1 kW

Mechanical Losses for given example:

0 1		
L _m =	2.5	% (Table 2)
	88.3	kW
Shaft power requirement is sum of gas power re	quirement and m	nechanical losses. Thus
P _{shaft} =	3,621.4	kW
	3.622	kW

Summary of Results:

Polytropic Head,	71,971	N-m/kg
H _{poly} =		
No. of Stages =	3	
Discharge	99.9	°C
Temperature, T ₂		
Rotational Speed =	5,754	rpm
Shaft Power, P _{shaft}	3,622.0	kW
=		

Data Table reproduced from: "GPSA Engineering Data Book, 11th Edition-SI, 1998"

				Specific
				Heat at
	Critical	Critical		constant
	Pressure,	Temperature	Molecular	pressure,
Component	kPa (abs)	, K	Weight	C _p , KJ/kg-K
Methane	4,599	190.56	16.043	2.204
Ethane	4,880	305.41	30.07	1.7053
Propane	4,240	369.77	44.097	1.6242
Isobutane	3,640	407.82	58.123	1.6164
n-Butane	3,784	425.1	58.123	1.6514
Isopentane	3,381	460.35	72.15	1.6071
n-Pentane	3,365	469.65	72.15	1.6233
Neopentane	3,199	433.71	72.15	1.632
n-Hexane	3,030	506.4	86.177	1.6151
n-Heptane	2,740	539.2	100.204	1.6074
n-Octane	2,490	568.4	114.231	1.6026
n-Nonane	2,280	594.7	128.258	1.599
n-Decane	2,100	617.7	142.285	1.5962
Carbon Dioxide	7,374	304.11	44.01	0.83294
Hydrogen Sulfide	8,963	373.37	34.082	0.99794
Oxygen	5,043	154.59	32	0.91673
Nitrogen	3,398	126.21	28.0134	1.0395
Water	22,064	647.1	18.01	1.8617
Sulfur Dioxide	7,884	430.8	64.065	0.61942
Air	3,771	132.43	28.9625	1.004

Prepared by:

Ankur Srivastava Chemical Engineer E-mail: ankur_2061@hotmail.com

=Input Values

=Calculated Values

U.S. Customary Units

Inputs:	
---------	--

Inlet Pr., P ₁
Inlet Temp., T ₁
Disch. Pr., P ₂
Mass flow, M

30 psia 104 °F 100 psia 300,000.0 lb/h

Calculations:

Component	mole fraction	Component	Pseudo-Critical	Component	Pseudo-	Component	Pseudo-	Specific	Pseudo-
		Critical	Press., P _{pc} ,	Critical	Critical	Molecular	Molecular	Heat at	Specific Heat
		Press., psia	psia	Temp., R	Temp.,	Wt.	wt., MW	const.	at const.
					T _{pc} , R			press., C _{p,}	press., C _{p,}
					-			Btu/lb-°F	Btu/lb-°F
Ethane	0.05	707	35.3	549.92	27.50	30.069	1.50	0.4088	0.0204
Propane	0.8	616	492.4	665.92	532.74	44.096	35.28	0.3897	0.3118
n-Butane	0.15	551	82.6	765.55	114.83	58.122	8.72	0.39649	0.0595
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
		0	0.0	0	0.00	0	0.00	0	0.0000
	1	l I	610.4		675.06		45.50]	0.392

Inlet compressibility factor, $Z_1 =$ Specific Heat Ratio, $\kappa_1 = C_p / C_v$ Inlet volume flow **@P1&T1**, Q1

 $\begin{array}{l} (Calculated from "Comp. Factor US" worksheet) \\ C_p/(C_p\text{-}(1.986 \ / \ MW)) \\ M^*10.73^*(T_1\text{+}460)^*Z_1 \ / \ P_1\text{*}MW^*60 \end{array}$

temperature)

Table 1

Typical Centrifugal Compressor Frame Data

Frame	Nominal Inl	et Volume flow	Nominal Po	olytropic head	Nominal	Nominal	Nominal Impe	eller Diameter
					Polytropic	Rotational		
					efficiency	Speed		
	English (ICFM)	Metric (m ³ /h)	English (ft-	Metric (N-	(%)	(RPM)	English (inch)	Metric (mm)
			lb _f /lb _m)	m/kg)	. ,	. ,		
А	1,000-7,000	1,700-12,000	10,000	30,000	76	11,000	16	406
В	6,000-18,000	10,000-31,000	10,000	30,000	76	7,700	23	584
С	13,000-31,000	22,000-53,000	10,000	30,000	77	5,900	30	762
D	23,000-44,000	39,000-75,000	10,000	30,000	77	4,900	36	914
E	33,000-65,000	55,000-110,000	10,000	30,000	78	4,000	44	1,120
F	48,000-100,000	82,000-170,000	10,000	30,000	78	3,300	54	1,370

(Table reproduced from page 234 of "Pipeline Rules of Thumb Handbook" by E.W. McAllister, 3rd Ed., Gulf Publishing Company, Houston,TX) <u>Note</u>: Nominal polytropic head values have been calculated using the "Chart" worksheet and not referred from Table 1

Frame Selection	C	(Select from Table 1 based on inlet volume flow)
$H_{poly-nom} =$	8,442 ft-lb _f / lb _m	(from polynomial equation from "Chart US" worksheet)
$\eta_{poly} =$	77 %	(From Table 1)
$N_{nom} =$	5,900 rpm	(FromTable 1)
Pr. Ratio, r _P = n/(n-1) = T ₂ =		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

(Calculated from "Comp. Factor US" worksheet) $(Z_1+Z_2)/2$

Average ĸ-value

The inlet κ value is generally used for polytropic head calculations. The polytropic head equation is insensitive to κ -value (and therefore n-value) within the limits that κ normally varies during compression. This is because any multiplier in the polytropic head equation tends to balance corresponding errors in the (n-1)/n exponent.

Number of Stages

Definition of Stage: For the purpose of this spreadsheet, a stage is defined as an impeller-diffuser pair. A series of stages will comprise a 'section' or 'process stage' between which there is no intercooling or loss or gain in flow (i.e. no sidestreams, bypassing or injection) & whose rotational speeds are in fixed ratio to each other.

DEP 31.29.40.10-Gen.: "Single section compressors with in-line impeller arrangements shall have no more than 9 impellers per casing. Two section compressors shall have no more than 8 impellers per casing. Compressors with one side-stream shall have a maximum of 7 impellers per casing, for each additional sidestream one additional impeller less in order to have sufficient space for adequate mixing of main & side streams."

Thus number of stages =	2.9 3	$(H_{poly}/H_{poly-nom})$ (Round-up to the next whole integer if calculated stages >X.2 & round-down if ≤ X.2, where X = a whole integer)
Calculated polytropic head per stage =	8,030 ft-lb _f / lb _m	
Rotational Speed		
N _{nom} =	5,900 rpm	
Actual rotational speed =	5,754 rpm	N _{nom} *((H _{poly} /H _{poly-nom} *No. of Stages) ^{0.5})
Shaft Power, P shaft		
Gas Power Requirement, P _{gas} =	4,740.0 hp	M*H _{poly} /(1.98E+6*η _{poly})

Table 2

Approximate Mechanical Losses as a Percentage of Gas Power Requirement	

Gas Power Re	Mechanical Losses, L _m ,	
English (hp)	Metric (kW)	%
0-3,000	0-2,500	3
3,000-6,000	2,500-5,000	2.5
6,000-10,000	5,000-7,500	2
10,000+	7,500+	1.5

(Table reproduced from page 236 of "Pipeline Rules of Thumb Handbook" by E.W. McAllister, 3rd Ed., Gulf Publishing Company, Houston, TX)

Mechanical Losses for given example:

L _m =	2.5	% (Table 2)
	118.5	hp
Shaft power requirement is sum of gas power re	quirement and m	echanical losses. Thus
P _{shaft} =	4,858.5	hp
	4,859	hp

Summary of Results:

Polytropic Head,	24,089	ft-lb _f / lb _m
H _{poly} =		
No. of Stages =	3	
Discharge	211.4	°F
Temperature, T ₂		
Rotational Speed =	5,754	rpm
Shaft Power, P _{shaft}	4,859.0	hp
=		

Data Table reproduced from: "GPSA Engineering Data Book, 12th Edition-FPS, 2004"

				Specific Heat
	Critical	Critical		at constant
	Pressure.	Temperature	Molecular	pressure, C _n ,
Component	psia	, °F	Weight	Btu/lb-°F
Methane	667	-116.66	16.042	0.52725
Ethane	706.6	89.92	30.069	0.4088
Propane	615.5	205.92	44.096	0.3897
Isobutane	527.9	274.41	58,122	0.39709
n-Butane	550.9	305.55	58,122	0.39649
Isopentane	490.4	369	72.149	0.38311
n-Pentane	488.8	385.8	72.149	0.38882
Neopentane	463.5	321	72.149	0.39126
n-Hexane	436.9	453.8	86.175	0.38696
n-Heptane	396.8	512.9	100.202	0.38566
n-Octane	360.7	564.2	114.229	0.38446
n-Nonane	330.7	610.8	128.255	0.38358
n-Decane	304.6	652.2	142.282	0.38294
Carbon Dioxide	1,070	87.76	44.01	0.19875
Hydrogen Sulfide	1,306.5	212.81	34.082	0.23811
Oxygen	731.4	-181.43	31.9988	0.21894
Nitrogen	492.5	-232.53	28.0135	0.24829
Water	3,200.1	705.1	18.0153	0.44476
Sulfur Dioxide	1,143	315.48	64.065	0.14735
Air	551.9	-220.97	28.9586	0.23992

Prepared by:

Ankur Srivastava Chemical Engineer E-mail: ankur_2061@hotmail.com

Molecular Weight, MW	Polytropic head per stage, ft- lb _f /lb _m	Calculated head per eqn., ft-lb _f /lb _m	Error % for tabulated and eqn. values
16	12,400	12,277	-1.00
17	12,200	12,090	-0.90
18	12,000	11,907	-0.78
19	11,800	11,728	-0.61
20	11,600	11,553	-0.41
21	11,400	11,382	-0.16
22	11,200	11,215	0.13
23	11,000	11,052	0.47
24	10,800	10,893	0.86
25	10,600	10,738	1.30
26	10,400	10,587	1.80
27	10,200	10,440	2.35
28	10,000	10,297	2.97
29	10,000	10,158	1.58
30	10,000	10,023	0.23
31	9,900	9,892	-0.08
32	9,800	9,765	-0.36
33	9,700	9,642	-0.60
34	9,600	9,523	-0.80
35	9,500	9,408	-0.97
36	9,400	9,297	-1.10
37	9,300	9,190	-1.18
38	9,200	9,087	-1.23
39	9,100	8,988	-1.23
40	9,000	8,893	-1.19
41	8,900	8,802	-1.10
42	8,800	8,715	-0.97
43	8,700	8,632	-0.78
44	8,600	8,553	-0.55
45	8,500	8,478	-0.26
46	8,400	8,407	0.08
47	8,300	8,339	0.48
48	8,200	8,276	0.93
49	8,100	8,217	1.45
50	8,000	8,162	2.03

"To determine the number of stages (using the impeller and diffuser defined as the stage), assume $10,000 \text{ ft-l}\text{h/b}_m$ of head per stage. This value can be used if the molecular weight is in the range of 28 to 30. For other molecular weights, this initial value must be modified. As a rule of thumb, lower the head per stage by $100 \text{ ft-l}\text{h/l}\text{b}_m$ for each unit increase in molecular weight. Conversely, raise the allowable head per stage 200 ft-lb_l/lb_m for a unit decrease in molecular weight. The rule of thumb gives the best results for a molecular weight range of 2 through 70. Because this sizing procedure is being used only to establish the rough size of the compressor, the upper range may be extended with some loss in accuracy." - Page 196, Compressors: Selection and Sizing, 3rd Edition, by Royce N. Brown

Revision: 0 Prepared By: Checked By: Approved By:

This sheet is applied for the "Polytropic Head US Cust" worksheet

Calculations for Inlet Compressibility Factor, Z₁ using Redlich-Kwong Equation of State

Molecular Weight, M	45.50 g/g-mol
Pseudo-Critical Temp., T _c :	375.04 °K
Pseudo-Critical Press., Pc:	41.53 atmA
Inlet temperature, T ₁	313.33 °K
Inlet Pressure, P ₁	2.041 atmA
Constants Used:	
Cas Constant P:	0.08206.L*atm/a.mol*°K
Gas Considiit, R.	0.08200 L atti/g-mor K
Calculated Parameters:	
Reduced Temperature, Tr	0.835 (T/T _c)
Reduced Pressure, Pr	0.049 (P/P _c)
Equations:	
$A^2 =$	0.03293
B =	0.00510
q =	-0.02781
r =	0.00017
f =	-0.30553
g =	-0.06497
C =	0.00000
D =	IRRELEVANT
E1 =	IRRELEVANT
φ =	0.02948
Ė=	IRRELEVANT
z1 =	0.97156
z2 =	0.00879
z3 =	0.01965
z0 =	IRRELEVANT
z =	0.972

Calculations for Discharge Compressibility Factor, Z₂ using Redlich-Kwong Equation of State

		-
Molecular Weight, M	45.50	g/g-mol
Pseudo-Critical Temp., T _c :	375.04	°К
Pseudo-Critical Press., Pc:	41.53	atmA
Discharge temperature, T ₂	372.98	°К
Discharge Pressure, P ₂	6.805	atmA
Constants Used: Gas Constant, R:	0.08206	L*atm/g-mol*°K
Calculated Parameters:		

Reduced Temperature, T _r	0.995 (T/T _c)
Reduced Pressure, P _r	0.164 (P/P _c)

Equations:

$A^2 =$	0.07100
B =	0.01427
q =	-0.05653
r =	0.00101
f =	-0.27681
g =	-0.05624
C =	0.00001
D =	0.31222
E1 =	0.02581
φ =	IRRELEVANT
E =	0.29553
z1 =	IRRELEVANT
z2 =	IRRELEVANT
z3 =	IRRELEVANT
z0 =	0.94108
z =	0.941

SI Units

Inputs

Head Coefficient, μ0.48dimensionless(Recommended Value)Calc. Polytropic Head
per Stage, H_{poly}23,990N-m/kg(Calculated value from 'Polytropic Head SI' worksheet)Impeller diameter762mm(Refer Table 1 on 'Polytropic Head SI' worksheet)

Calculations

Impeller tip Speed, u₂ Approx. Rotational Speed, N

US Customary Units

Inputs

 Head Coefficient, μ
 0.48
 dimensionless
 (Recommended Value)

 Calc. Polytropic Head
 8,030
 ft-lb_f / lb_m
 (Calculated value from 'Polytropic Head US Cust' worksheet)

 per Stage, H_{poly}
 inch
 (Refer Table 1 on 'Polytropic Head US Cust' worksheet)

Calculations

Impeller tip Speed, u₂ Approx. Rotational Speed, N

