NONCOMPRESSIBLE FLOW THROUGH A HOLE IN SHELL

- **BASIS:** Flow of Liquid Through a Hole in a Tank; Chemical Process Safety: Fundamentals with Applications by Daniel A. Crowl / Joseph F. Louvar: 1990
- **NOTE:** Always begin a new case by retrieving the original file. Direct entry of data in cells that originally contain table lookups could cause functions to be lost, or incorrect calculations. I format cells requiring entry colored **RED**; calculated values are black.
 - 1.) Enter the vessel identification at [C4].
 - 2.) Enter the orifice diameter at [C6].
 - 3.) Enter the orifice coefficient at [C7].
 - 4.) Enter the vessel internal pressure (P1) at [C8].
 - 5.) Enter fluid at [G6]. The specific gravity if in the look-up table will be automatically returned.
 - 6.) Enter specific gravity at [G7] if not in the lookup table.
 - 7.) Enter the height of the liquid above the leak/hole in inches (imperial) or millimeter (metric) at [H16].
 - 8.) Enter the elevation of the leak/hole above the floor in inches (imperial) or millimeter (metric) at [H22].
 - 9.) The "x" coordinate or horizontal distance (trajectory) of the leaking stream is shown at [F35].
 - 10.) Enter the internal diameter of the tank in inches (imperial) or millimeter (metric) at [G41]. The drain-down time in seconds is calculated and shown at [G46], this value is based on a constant vessel pressure, constant cross-sectional area, as well as the liquid NOT being replenished during the drain period.

Print out using direct Excel commands. This application is provided by Chemical Engineers Resource Website, visit @ :heresources.con for additional selections.

Print out using direct EXCEL commands.

The originator of these spreadsheet(s) specifically excludes all warranties, expressed or implied, as to the accuracy of the data and other information set forth and assumes NO liability for any losses or damage resulting from the use of the materials or application of the data.

Consistent with GOOD ENGINEERING PRACTICE, the burden rests with the USER of these spreadsheets to review ALL calculations, and assumptions. The USER IS FULLY RESPONSIBLE for the results or decisions based on This Spreadsheet Requires MACROS to be ENABLED to ASSURE proper operation. See the Workbook Help Sheet for Additional Instructions on

dmcoffman@aol.com

04/17/04

•••• Maximum discharge stream coordinate " x " in feet ...

$$x := 2 \cdot K_0 \cdot \sqrt{\left(P_1 + h \cdot \frac{\rho}{144} \cdot y\right)} = 10.433699 \text{ feet}$$

··· Tank drain down time, seconds (assumes constant dia., liq. is not being replenished) ...

$$\operatorname{tank} \operatorname{diameter}, \operatorname{Td} = \begin{array}{c} 96 & \operatorname{inches} \\ = & 8 & \operatorname{feet} \end{array}$$
$$= & 8 & \operatorname{feet} \end{array}$$
$$\operatorname{t} := \left(\frac{1}{\operatorname{K}_{0} \cdot \operatorname{g}}\right) \left(\frac{\pi \cdot \frac{\operatorname{T}_{d}^{2}}{4}}{\pi \cdot \frac{\operatorname{O}_{d}^{2}}{\frac{144}{4}}}\right) \cdot \sqrt{\left[2 \cdot \operatorname{g}_{c} \cdot \frac{(\operatorname{P}_{1} \cdot 144)}{\rho} + 2 \cdot \operatorname{g} \cdot \operatorname{h}\right]} = \begin{array}{c} 41831.047 & \operatorname{seconds} \\ 11.619735 & \operatorname{hours} \end{array}$$

04/17/04

••• Maximum discharge stream coordinate " x " in feet ...

$$x := 2 \cdot K_0 \cdot \sqrt{\left(P_1 + h \cdot \frac{\rho}{10197.16} \cdot y\right)} = 2.4439933 \text{ meter}$$

··· Tank drain down time, seconds (assumes constant dia., liq. is not being replenished) ...

$$\operatorname{tank \, diameter, \, Td} = \frac{4572}{4.572} \quad \operatorname{millimeter}$$
$$= 4.572 \quad \operatorname{meter}$$
$$t := \left(\frac{1}{K_0 \cdot g}\right) \left(\frac{\pi \cdot \frac{T_d^2}{4}}{\pi \cdot \frac{O_d^2}{\frac{100000}{4}}}\right) \sqrt{\left[2 \cdot g_c \cdot \frac{(P_1 \cdot 10197.16)}{\rho} + 2 \cdot g \cdot h\right]} = \frac{147020.58 \text{ seconds}}{40.839049 \text{ hours}}$$

	specific	nominal	ID Sched	ID Sched	ID Sched
LIQUID	gravity	diameter	10	40	80
AMMONIA 26%	0.890	1/2	0.674	0.622	0.546
AMMONIA 100%	0.682	3/4	0.884	0.824	0.742
BRINE 26%	1.190	1	1.097	1.049	0.957
CARBON DIOXIDE	1.102	1 1/4	1.422	1.380	1.278
CAUSTIC 3%	1.030	1 1/2	1.682	1.610	1.500
CAUSTIC 10%	1.100	2	2.157	2.067	1.939
CAUSTIC 20%	1.219	2 1/2	2.635	2.469	2.323
CAUSTIC 50%	1.525	3	3.260	3.068	2.900
CHLORINE	1.467	3 1/2	3.760	3.548	3.364
ETHANOL 40%	0.935	4	4.260	4.026	3.826
ETHANOL 95%	0.804	6	6.357	6.065	5.761
ETHANOL 100%	0.789	8	8.329	7.981	7.625
FUEL OIL #2	0.876	10	10.420	10.020	9.562
FUEL OIL #6	0.993	12	12.390	11.938	11.374
GASOLINE	0.751	14	13.624	13.124	12.500
HYDROCHLORIC 31.5%	1.159	16	15.624	15.000	14.312
ISOPROPYL ALCOHOL	0.785	18	17.624	16.867	16.124
KEROSENE	0.815	20	19.564	18.812	17.938
METHANOL 40%	0.937	24	23.500	22.624	21.562
METHANOL 90%	0.824				
METHANOL 100%	0.796				
NITROGEN	0.807				
PHOSPHORIC 50%	1.335				
PHOSPHORIC 75%	1.580				
SULPHUR DIOXIDE	1.434				
SULPHURIC 98%	1.830				
TURPENTINE	0.864				
WATER	1.000				