CHAPTER

7-1 1 INTRODUCTION

Our previous discussions of convection heat transfer have considered only the calculation
of forced-convection systems where the fluid is forced by or through the heat-transfer
surface. Natural, or free, convection is observed as a result of the motion of the fluid due
to density changes arising from the heating process. A hot radiator used for heating aroom
isone example of apractical device that transfers heat by free convection. The movement
of the fluid in free convection, whether it is a gas or a liquid, results from the buoyancy
forces imposed on the fluid when its density in the proximity of the heat-transfer surfaceis
decreased asaresult of the heating process. The buoyancy forceswould not be present if the
fluid were not acted upon by someexternal forcefield such asgravity, although gravity isnot
the only type of force field that can produce the free-convection currents; a fluid enclosed
in arotating machine is acted upon by a centrifugal force field, and thus could experience
free-convection currentsif one or more of the surfacesin contact with the fluid were heated.
The buoyancy forces that give rise to the free-convection currents are called body forces.

7-2 | FREE-CONVECTION HEAT TRANSFER
ONAVERTICAL FLAT PLATE

Consider the vertical flat plate shown in Figure 7-1. When the plate is heated, a free-
convection boundary layer isformed, as shown. The velocity profile in this boundary layer
is quite unlike the velocity profile in a forced-convection boundary layer. At the wall the
velocity is zero because of the no-dlip condition; it increases to some maximum value and
then decreasesto zero at theedge of theboundary layer sincethe*free-stream” conditionsare
at rest in the free-convection system. The initial boundary-layer development is laminar;
but at some distance from the leading edge, depending on the fluid properties and the
temperature difference between wall and environment, turbulent eddies are formed, and
transition to aturbulent boundary layer begins. Farther up the plate the boundary layer may
become fully turbulent.

To analyze the heat-transfer problem, we must first obtain the differential equation of
motion for the boundary layer. For this purpose we choose the x coordinate along the plate
and the y coordinate perpendicular to the plate as in the analyses of Chapter 5. The only
new force that must be considered in the derivation is the weight of the element of fluid.
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Figure 7-1 | Boundary layer
on avertical flat plate.
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7-2 Free-Convection Heat Transfer on a Vertical Flat Plate

As before, we equate the sum of the external forces in the x direction to the change in
momentum flux through the control volume dx dy. There results

du  du b Fu
p(u——i—v—):——p—pg—i- — [7-1]
ox ay Iy

where the term —pg represents the weight force exerted on the element. The pressure
gradient in the x direction results from the change in elevation up the plate. Thus

op
P —Poo8 [7-2]

X
In other words, the change in pressure over a height dx is equal to the weight per unit area
of the fluid element. Substituting Equation (7-2) into Equation (7-1) gives
2
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— 7-3
ox ay dy2 [7-3]

The density difference p. — p may be expressed in terms of the volume coefficient of
expansion 8, defined by
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— 7-4
ox ay dy2 [7-4]

This is the equation of motion for the free-convection boundary layer. Notice that the
solution for the velocity profile demands a knowledge of the temperature distribution. The
energy equation for the free-convection system is the same as that for aforced-convection

system at low velocity:
T AT 3T
pCp <u—+v—> =k— [7-5]
X

The volume coefficient of expansion 8 may be determined from tables of properties
for the specific fluid. For ideal gasesit may be calculated from (see Problem 7-3)

_1
b=7

where T isthe absolute temperature of the gas.

Even though the fluid motion is the result of density variations, these variations are
quite small, and a satisfactory solution to the problem may be obtained by assuming incom-
pressible flow, that is, p = constant. To effect a solution of the equation of motion, we use
the integral method of analysis similar to that used in the forced-convection problem of
Chapter 5. Detailed boundary-layer analyses have been presented in References 13, 27,
and 32.

For the free-convection system, the integral momentum equation becomes

8
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CHAPTER 7 Natura Convection Systems

and weobservethat thefunctional form of both thevel ocity and thetemperaturedistributions
must be known in order to arrive at the solution. To obtain these functions, we proceed in
much the same way as in Chapter 5. The following conditions apply for the temperature
distribution:

w ay=0
Too ay=$

T
T
T

o8]

—=0 ay=34
ay Y

so that we obtain for the temperature distribution

T-T 2
o =(-3) [7-7
Three conditions for the velocity profile are

u=0 ay=0

u=0 ay=4§

ay Y
An additional condition may be obtained from Equation (7-4) by noting that
32 T, —T,
y v

Asintheintegral analysisfor forced-convection problems, we assume that the vel ocity
profileshave geometrically similar shapesat variousx distancesal ong theplate. For thefree-
convection problem, we now assume that the velocity may be represented as a polynomial
function of y multiplied by some arbitrary function of x. Thus,

l:a+by+cy2+dy3

Ux
whereu, isafictitiousvelocity that isafunction of x. The cubic-polynomial formischosen
because there are four conditions to satisfy, and this is the simplest type of function that
may be used. Applying the four conditions to the velocity profile listed above, we have

u_ (T —Tx)y (1- z>2
uy 4u v ) )

The term involving the temperature difference, §2, and u, may be incorporated into the
function u, so that the final relation to be assumed for the velocity profileis

=) v

A plot of Equation (7-8) isgiven in Figure 7-2. Substituting Equations (7-7) and (7-8) into
Equation (7-6) and carrying out the integrations and differentiations yields

1 d

105 dx

Theintegra form of the energy equation for the free-convection systemis

)
% |:/(.) u(T — Too)dyi| =—« Ccll_j:| 70 [7-10]

1 .
(128) = 9T, — T3 - v% [7-9]
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7-2 Free-Convection Heat Transfer on a Vertical Flat Plate

Figure 7-2 | Free-convection velocity profile
given by Equation (7-8).
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and when the assumed vel ocity and temperature distributions are inserted into this equation

and the operations are performed, there results
Tw - Too

1(T T)d(fs)—2
S T

It is clear from the reasoning that led to Equation (7-8) that
Uy~ 82
Inserting thistype of relation in Equation (7-9) yields the result that

5~ x4

We therefore assume the following exponential functional variations for u, and é:

Uy :C1x1/2

8= Cox/4
Introducing these relations into Equations (7-9) and (7-11) gives

S 2 1/4 C2 1/4 C1 1/4
4—20ch2x /4 — gB(T,, — Tm)?x /4 _ C—va /

and
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These two equations may be solved for the constants C; and C2 to give
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[7-11]

[7-12]

[7-13]

[7-14]

[7-15]

[7-16]

[7-17]

[7-18]

[7-19]

The resultant expressions for the boundary layer thickness and fictitious velocity u, are

8
- =3.93Pr2(0.952 + Pr)Y/4Gr /4
X

[7-204]
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X

uy-=517(0952+ Pr)~Y2Grl/2 [7-20b]

The velocity profile shown in Figure 7-2 has its maximum value at y/8 = 1/3, giving
uUmax = (4/27)u, = 0.148u,.. The mass flow through the boundary layer at any x position
may be determined by evaluating the integral

5

. _ y N2 1 _ _ 9

m—/,oudy—/,oux 5 (1— 8) dy= 1 oud=0.083pu,6 = % pumaxd  [7-20c]
0

The respective values of § and u, determined from Equations (7-20a) and (7-20b) may be
inserted to obtain the mass flow values.

The Prandtl number Pr = v/« has been introduced in the above expressions along with
anew dimensionless group called the Grashof number Gr,:

_ 3
Gr, = 80w = Tl [7-21
Vv

The heat-transfer coefficient may be evaluated from
dT
quw=—kA _:| =hA(Ty — Too)
dy |,

Using the temperature distribution of Equation (7-7), one obtains

2k hx
= — or _—=
8 k

X
h NUx=23

so that the dimensionless equation for the heat-transfer coefficient becomes
Nu, = 0.508 Pr'/2(0.952 + Pr)~V/4Grl/4 [7-22]

Equation (7-22) gives the variation of the local heat-transfer coefficient along the
vertical plate. The average heat-transfer coefficient may then be obtained by performing
the integration

_ 1 rL
h=— f hydx [7-23]
L Jo

For the variation given by Equation (7-22), the average coefficient is
h=3%her [7-24]

The Grashof number may beinterpreted physically asadimensionless group represent-
ing theratio of the buoyancy forcesto the viscousforcesin the free-convection flow system.
It hasarolesimilar to that played by the Reynolds number in forced-convection systemsand
isthe primary variable used asacriterion for transition from laminar to turbulent boundary-
layer flow. For air in free convection on avertical flat plate, the critical Grashof number has
been observed by Eckert and Soehngen [1] to be approximately 4 x 108. Values ranging
between 108 and 10° may be observed for different fluids and environment “turbulence
levels.”

A very complete survey of the stability and transition of free-convection boundary
layers has been given by Gebhart et al. [13-15].

The foregoing analysis of free-convection heat transfer on a vertical flat plate is the
simplest case that may be treated mathematically, and it has served to introduce the new
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Figure 7-3 | Pulsed
free-convection
boundary layer on
vertica flat plate.
Distance between
letters=5cm.
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7-3 Empirical Relations for Free Convection

dimensionless variable, the Grashof number,” which is important in al free-convection
problems. But as in some forced-convection problems, experimental measurements must
be relied upon to obtain relations for heat transfer in other circumstances. These circum-
stances are usually those in which it is difficult to predict temperature and vel ocity profiles
analytically. Turbulent free convection is an important example, just asis turbulent forced
convection, of aproblem areain which experimental data are necessary; however, the prob-
lem is more acute with free-convection flow systems than with forced-convection systems
becausethe velocitiesare usually so small that they are very difficult to measure. For exam-
ple, the maximum free-convection velocity experienced by a vertical plate heated to 45°C
and exposed to atmospheric room air at 25°C is only about 350 mm/s. Despite the exper-
imental difficulties, velocity measurements have been performed using hydrogen-bubble
techniques [26], hot-wire anemometry [28], and quartz-fiber anemometers. Temperature
field measurements have been obtained through the use of the Zehnder-Mach interferom-
eter. The laser anemometer [29] is particularly useful for free-convection measurements
because it does not disturb the flow field.

An interferometer indicates lines of constant density in afluid flow field. For agasin
free convection at low pressure these lines of constant density are equivalent to lines of
constant temperature. Oncethetemperaturefieldisobtained, the heat transfer from asurface
in free convection may be calculated by using the temperature gradient at the surface and
the thermal conductivity of the gas. Several interferometric studies of free convection have
been made[1-3], and Figure 7-3 indicatestheisothermsin afree-convection boundary layer
on avertical flat plate with Ty = 48°C and T, = 20°C in room air. The spacing between
the horizontal markersisabout 2.5 cm, indicating a boundary-layer thickness of about that
sameva ue. Theletter A correspondsto theleading edge of the plate. Notethat theisotherms
are more closely spaced near the plate surface, indicating a higher temperature gradient in
that region. The oscillatory or “wave” shape of the boundary layer isotherms is caused by
aheat pulse from afinewire located at x = 2.5 cm and having afrequency of about 2.5 Hz.
The pulse moves up the plate at about the boundary layer velocity, so an indication of the
velocity profile may be obtained by connecting the maximum pointsin theisotherms. Such
aprofileisindicated in Figure 7-4. Eventually, at about Gr = 108-10° small oscillationsin
the boundary layer become amplified and transition to turbulence begins. The region shown
in Figure 7-3 isal laminar.

A number of references treat the various theoretical and empirical aspects of free-
convection problems. One of the most extensive discussionsisgiven by Gebhart et. al. [13],
and the interested reader may wish to consult this reference for additional information.

7-3 | EMPIRICAL RELATIONS
FOR FREE CONVECTION

Over theyearsit has been found that average free-convection heat-transfer coefficients can
be represented in the following functional form for avariety of circumstances:

Niuf =C(GryPrp™ [7-25]
"Hi story isnot clear on the point, but it appearsthat the Grashof number was named for Franz Grashof, a professor

of applied mechanicsat Karlsruhe around 1863 and one of thefounding directors of Verein deutscher Ingenieurein
1855. He devel oped some early steam-flow formulas but made no significant contributionsto free convection [36].
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Figure 7-4 | Free-convection velocity
profile indicated by
connecting maximum points
in boundary-layer isotherms
of Figure 7-3.

wherethe subscript f indicatesthat the propertiesin the dimensionless groups are eval uated
at the film temperature
T+ Ty
I=72
The product of the Grashof and Prandtl numbersis called the Rayleigh number:

Ra=Gr Pr [7-26]

Characteristic Dimensions

The characteristic dimension to be used in the Nusselt and Grashof numbers depends on
the geometry of the problem. For a vertical plate it is the height of the plate L; for a
horizontal cylinder it isthe diameter d; and so forth. Experimental datafor free-convection
problems appear in a number of references, with some conflicting results. The purpose of
the sections that follow isto give these results in a summary form that may be easily used
for calculation purposes. The functional form of Equation (7-25) is used for many of these
presentations, with the values of the constants C and m specified for each case. Table 7-1
provides a summary of the values of these correlation constants for different geometries,
and the sections that follow discuss the correlations in more detail.

For convenience of the reader, the present author has presented a graphical meld of
the correlations for the isothermal vertical plate and horizontal cylinder configurations in
the form of Figures 7-5 and 7-6. These figures may be used in lieu of the formulas when a
quick estimate of performance is desired.
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7-4 Free Convection from Vertical Planes and Cylinders

Table 7-1 | Constants for use with Equation (7-25) for isothermal surfaces.

Geometry GrypPry C m Reference(s)
Vertical planesand cylinders 10~1-104 UseFig.7-5 UseFig. 7-5 4
10*-10° 0.59 1 4
10%-10%3 0.021 £ 30
109-10%3 0.10 i 22,16"
Horizontal cylinders 0-107° 0.4 0 4
105104 UseFig.7-6  UseFig. 7-6 4
10*-10° 053 1 4
109-10%2 013 i 4
1010102 0.675 0.058 76"
102102 1.02 0.148 76"
102-10% 0.850 0.188 76
10*-107 0.480 1 76
107-10%2 0.125 i 76
Upper surface of heated plates 2 x 10%-8 x 106 0.54 1 44,52
or lower surface of cooled plates
Upper surface of heated plates 8 x 10%-101! 0.15 i 44,52
or lower surface of cooled plates
Lower surface of heated plates 10°-1011 0.27 1 44,37, 75
or upper surface of cooled plates
Vertical cylinder, 10%-106 0.775 0.21 77

height = diameter
characteristic length = diameter

Irregular solids, characteristic 10%-10° 0.52
length = distance fluid particle
travelsin boundary layer

T Preferred.

7-4 | FREE CONVECTION FROM VERTICAL
PLANESAND CYLINDERS

| sother mal Surfaces

78

ENTE

For vertical surfaces, the Nusselt and Grashof numbers are formed with L, the height of
the surface as the characteristic dimension. If the boundary-layer thickness is not large
compared with the diameter of the cylinder, the heat transfer may be calculated with the
same relations used for vertical plates. The general criterion isthat avertical cylinder may
be treated as a vertical flat plate [13] when

[7-27]

where D isthe diameter of the cylinder. For vertical cylinderstoo small to meet thiscriteria,
the analysis of Reference [84] for gaseswith Pr = 0.7 indicates that the flat plate results for
the average heat-transfer coefficient should be multiplied by a factor F to account for the
curvature, where

F=1.3[(L/D)/Grp]**+1.0 [7-27a]

For isothermal surfaces, the values of the constants C and m aregivenin Table 7-1 with
the appropriate references noted for further consultation. The reader’s attention is directed
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Figure 7-5 | Free-convection hesat transfer from vertical isothermal plates.
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to the two sets of constants given for the turbulent case (Gr ¢ Pr s > 10°). Although there
may appear to be a decided difference in these constants, a comparison by Warner and
Arpaci [22] of the two relations with experimental dataindicatesthat both sets of constants
fit available data. There are some indications from the analytical work of Bayley [16], as
well as heat flux measurements of Reference 22, that the relation

Nu; =0.10(Gr/ Pr )3
may be preferable.

More complicated relations have been provided by Churchill and Chu [71] that are
applicable over wider ranges of the Rayleigh number:

— 0.670 Ral/4
Nu=0.68 for Ra; < 10° 7-28
T (0.492/Pr)9/T673/9 L= [7-28]
12 0.387 Ral/® 1 12
Nu’“=0.825 for 107! < Ra;, < 10 7-29
T (0.492/Pr)9/1618/27 <R < [7-29]

Equation (7-28) is also a satisfactory representation for constant heat flux. Properties for
these equations are evaluated at the film temperature.

1012
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336 7-4 Free Convection from Vertical Planes and Cylinders
Figure 7-6 | Free-convection heat transfer from horizontal isothermal cylinders.
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Constant-Heat-Flux Surfaces

Extensive experiments have been reported in References 25, 26, and 39 for free convection
from vertical and inclined surfaces to water under constant-heat-flux conditions. In such
experiments, the results are presented in terms of a modified Grashof number, Gr*:

Gri=Gry Nu,= 8P q"éx [7-30]
kv

where ¢, = g/A isthe heat flux per unit area and is assumed constant over the entire plate
surface area.

The local heat-transfer coefficients were correlated by the following relation for the
laminar range:

h
Nuyy = é =0.60(Gr:Prp)¥>  10° < Gr¥ Pr < 10%; ¢, = const [7-31]

It isto be noted that the criterion for laminar flow expressed in terms of Gr} isnot the same
asthat expressed interms of Gr,.. Boundary-layer transition was observed to begin between
Gri Pr=3x 10' and 4 x 10 and to end between 2 x 10'* and 10%. Fully developed
turbulent flow was present by Gr Pr = 1014, and the experiments were extended up to Gr*
Pr =106, For the turbulent region, the local heat-transfer coefficients are correlated with

Nu, =0.17(Gr* PnY4 2% 10" < Gr* Pr < 10®; ¢,, = const [7-32]
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All properties in Equations (7-31) and (7-32) are evaluated at the local film temperature.
Although these experiments were conducted for water, the resulting correlations are shown
towork for air aswell. The average heat-transfer coefficient for the constant-heat-flux case
may not be eval uated from Equation (7-24) but must be obtained through a separate applica-
tion of Equation (7-23). Thus, for the laminar region, using Equation (7-31) to evaluate i,

1 L

h=3he—p gw = const

At this point we may note the relationship between the correlations in the form of
Equation (7-25) and those just presented in terms of Gri = Gr, Nu,. Writing Equation
(7-25) asalocal heat-transfer form gives

Nu, = C(Gr Pr)™ [7-33]
Inserting Gr, = Gr/Nu, gives
Nult" = C(Gri Pr)”
or
Nu, = CY/@+m (Grt prym/tm) [7-34]

Thus, when the “characteristic” values of m for laminar and turbulent flow are compared
to the exponents on Gr?, we obtain

Laminar. L. m !
M= —. [
4 1+m 5

1 m 1

Turbulent, m = —: —_—
" 3 1+m 4

While the Gr* formulation is easier to employ for the constant-heat-flux case, we see that
the characteristic exponents fit nicely into the scheme that is presented for the isothermal
surface correlations.

Itisalso interesting to note the variation of 4, with x in the two characteristic regimes.
For the laminar range m = %1’ and from Equation (7-25)

By~ }(x3)1/4 — /A
X

In the turbulent regime m = % and we obtain
1 .
hy ~ = (x3)Y3 = const with x
X

So when turbulent free convection is encountered, the local heat-transfer coefficient is
essentially constant with x.

Churchill and Chu [71] show that Equation (7-28) may be modified to apply to the
constant-heat-flux caseif the average Nusselt number is based on the wall heat flux and the
temperature difference at the center of the plate (x =L/2). Theresultis

0.67(Gr} Pr)t/4

—1/4 —
Nu/4(Nu, — 0.68) =
U (Nue )= [T (0.492, Pr)9/6]478

[7-35]

whereNuy =g, L/(kAT) and AT =T, — Too @ L/2 — To.
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7-4 Free Convection from Vertical Planes and Cylinders

EXAMPLE 7-1 Constant Heat Flux from Vertical Plate

In aplant location near a furnace, a net radiant energy flux of 800 W/m2 isincident on a vertical
metal surface 3.5 m high and 2 m wide. The metal isinsulated on the back side and painted black
so that all the incoming radiation is lost by free convection to the surrounding air at 30°C. What
average temperature will be attained by the plate?

H Solution
We treat this problem as one with constant heat flux on the surface. Since we do not know the
surface temperature, we must make an estimate for determining 7y and the air properties. An

approximate value of / for free-convection problemsis 10 W/m? - °C, and so, approximately,

800
AT=2"~ 2 _goec
h 10

Then
wa? +30=70°C=343K
At 70°C the properties of air are
V=2043x10°m?/s B= Tif =292x103K1
k=0.0295W/m-°C  Pr= 07

From Equation (7-30), with x=3.5m,

o gBqux®  (9.8)(2.92 x 1073)(800)(3.5)* 14
= = =279 x 10
kv? (0.0295)(2.043 x 10—5)2

We may therefore use Equation (7-32) to evaluate 7,

hy = 5(0.17)(Gr; Pr)l/4
X

_0.0295
35
=5.36 W/m?2 . °C [0.944 Btu/h - ft2 . °F]

(0.17)(2.79 x 101 x 0.7) /4

In the turbulent heat transfer governed by Equation (7-32), we note that
hx

or h, does not vary with x, and we may take this as the average value. The value of
h=5.41 W/m2 -°C is less than the approximate value we used to estimate 7's. Recalculating
AT, weobtain

AT ="—=—=149°C
h
Our new film temperature would be
149
Tr=30+ — =104.5°C
f T
At 104.5°C the properties of air are
1
v=2354x10"°m?/s B= 7 =265 10-3/K

f
k=0.0320W/m-°C Pr=0.695
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Then
o« _ (98)(265x10~°)(800)(35)*

= =175x 10*
(0.0320)(2.354 x 10—5)2

and A, is calculated from

hy = E(O.l?)(Grj Pr)l/4
X

_(0.0320)(0.17)
N 35
=5.17 W/m2.°C [—0.91 Btu/h - ft2 . °F]

[(1.758 x 101)(0.695)]1/4

Our new temperature difference is calculated as

quw 800 o
AT = (Ty — T¢ =—=—=1
(Tw o0)av h 517 55°C

The average wall temperature is therefore

Ty.av =155+ 30=185°C

Another iteration on the value of 7' is not warranted by theimproved accuracy that would result.

Heat Transfer from Isothermal Vertical Plate

A large vertical plate 4.0 m high is maintained at 60°C and exposed to atmospheric air at 10°C.
Calculate the heat transfer if the plate is 10 m wide.

B Solution
We first determine the film temperature as

60+10 __,
Ty=—5—=3°C=308K

The properties of interest are thus

1 -3
= =3.25x 1 =0.02
B 308 3.25x 10 k =0.02685

»y=165%x10"% Pr=07

and

(9.8)(3.25 x 1073)(60 — 10)(4)3
B (165 x 10-6)2
=2.62x 101

Gr Pr 0.7

We then may use Equation (7-29) to obtain

(0.387)(2.62 x 1011)1/6

—1/2
Nu’“=0.825+
[1+ (0.492/0.7)9/1618/27

=26.75
Nu=716

The heat-transfer coefficient is then
_ (716)(0.02685)

=4.80 W/m?.°
20 80 W/m?.°C

=
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7-5 Free Convection from Horizontal Cylinders

The heat transfer is
q=hA(Ty — Txo)
= (4.80)(4)(10)(60 — 10) = 9606 W
As an dternative, we could employ the simpler relation
Nu = 0.10(Gr Pr)1/3
= (0.10)(2.62 x 1011)1/3 —639.9

which gives avalue about 10 percent lower than Equation (7-29).

7-5 | FREE CONVECTION FROM
HORIZONTAL CYLINDERS

Thevaluesof the constants C andm aregivenin Table 7-1 according to References 4 and 76.
The predictions of Morgan (Reference 76 in Table 7-1) are the most reliable for Gr Pr of
approximately 10~°. A more complicated expression for use over awider range of Gr Pr is
given by Churchill and Chu [70]:

Gr Pr
[1+ (0.559/Pr)9/16]16/9

1/6
Nu'? = 0.60+ 0.387 { } for 105 < Gr Pr

<1012 [7-36]

A simpler equation is available from Reference 70 but is restricted to the laminar range of
107% < Gr Pr < 10°:

0.518(Gr, Pr)Y/4
[14 (0.559/Pr)9/16]4/9

Propertiesin Equations (7-36) and (7-37) are evaluated at the film temperature.
Heat transfer from horizontal cylinders to liquid metals may be calculated from
Reference 46:

Nu; =0.36+

[7-37]

Nuy = 0.53(Gry Pr3)/4 [7-38]

EXAMPLE 7-3 Heat Transfer from Horizontal Tube in Water

A 2.0-cm-diameter horizontal heater is maintained at asurfacetemperature of 38°C and submerged
in water at 27°C. Calculate the free-convection heat |oss per unit length of the heater.

H Solution
The film temperature is

38427

Ty= —325°C

From Appendix A the properties of water are
k=0.630 W/m-°C

and the following term is particularly useful in obtaining the Gr Pr product when it is multiplied
by d3AT:
gBo’cp

= = 248x101°  [1/m3.°C]
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Gr Pr = (2.48 x 1019)(38 — 27)(0.02)3 = 2.18 x 10°

Using Table 7-1, weget C =0.53 and m = %, so that

Nu = (0.53)(2.18 x 10%)Y/4 =20.36

(20.36)(0.63) 2 o
0.02 642 W/m=."C
The heat transfer is thus

% = hd(Ty — Too)

= (642)7(0.02)(38 — 27) = 443 W/m

Heat Transfer from Fine Wirein Air

A fine wire having a diameter of 0.02 mm is maintained at a constant temperature of 54°C by an
electric current. Thewireisexposedtoair at 1 atm and 0°C. Calcul ate the el ectric power necessary
to maintain the wire temperature if the length is 50 cm.

B Solution

The film temperatureis 7y = (54 +0) /2 =27°C =300 K, so the properties are
B = 1/300=0.00333 »=15.69 x 10 8 m?/s
k =0.02624 W/m-°C Pr=0.708

The Gr Pr product is then calculated as

_(9.8)(0.00333) (54— 0)(0.02 x 10~3)3

(15.69 x 10-6)2 (0.708) = 4.05 x 10>

GrPr

From Table 7-1 we find C = 0.675 and m = 0.058 so that
Nu = (0.675)(4.05 x 10~°)0-058 _ 0 375

and

() - 00820

= T2 . 103 =926 w/m?.°C
b X

d
The heat transfer or power required is then

q=hA (Ty — Too) = (492.6)7(0.02 x 1073)(0.5)(54 —0)=0.836 W

Heated Horizontal Pipein Air

A horizontal pipe 1 ft (0.3048 m) in diameter is maintained at a temperature of 250°C in aroom
where the ambient air is at 15°C. Calculate the free-convection heat |oss per meter of length.

B Solution
We first determine the Grashof-Prandtl number product and then select the appropriate constants
from Table 7-1 for use with Equation (7-25). The properties of air are evaluated at the film

temperature:

Ty+Too 25041
= “’J; X - 50;’ 5:132.5°C=405.5K

Ty
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7-6 Free Convection from Horizontal Plates

1 1
k = 0.03406 W/m - °C =~ =~ —247x103k!
/ P=7,= 185 .

v=2654x10"%m?/s  Pr=0.687

gB(Tw — Too)d®

V2
_(9.8)(2.47 x 10~3)(250 — 15)(0.3048)(0.687)
a (26.54 x 10-6)2

GryPr= Pr

—1.571 x 108

From Table 7-1, C=0.53 and m = %, S0 that

Nu, = 0.53(Gr, Pr)1/4 = (0.53)(1.571 x 10%)/4 =59.4
kNuy  (0.03406)(59.4)

— 2 o ft2 o
7 03048 =6.63W/m<-°C [1.175Btu/h-ft<-°F]

h=

The heat transfer per unit length is then calculated from
% =hr d(Ty — To) = 6.637(0.3048) (250 — 15) = 1.49 kW/m  [1560 Btu/h - ft]

Asan alternative, we could empl oy the more complicated expression, Equation (7-36), for solution
of the problem. The Nusselt number thus would be calculated as

1/6
1.571 x 108 /

~-1/2
Nu™" = 0.60+ 0.387
! [1+ (0.559/0.687)9/16116/9

Nu = 64.7

or avalue about 8 percent higher.

7-6 | FREE CONVECTION FROM
HORIZONTAL PLATES

| sother mal Surfaces

The average heat-transfer coefficient from horizontal flat platesis calculated with Equation
(7-25) and the constants given in Table 7-1. The characteristic dimension for use with these
relations hastraditionally [4] been taken asthelength of aside for asquare, the mean of the
two dimensions for a rectangular surface, and 0.9d for a circular disk. References 52 and
53 indicate that better agreement with experimental data can be achieved by calculating the
characteristic dimension with
L=— 7-39

- [7-39]

where A isthe areaand P is the perimeter of the surface. This characteristic dimension is
also applicable to unsymmetrical planforms.

Constant Heat Flux

The experiments of Reference 44 have produced the following correlations for constant
heat flux on a horizontal plate. For the heated surface facing upward,

Nuz =0.13(Gr, PnY®  for Gry Pr <2 x 10° [7-40]
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and
Nuz =0.16(Gr; Pn)Y/®  for 2 x 10° < Gr; Pr < 10™ [7-41]

For the heated surface facing downward,

Nuz =0.58(Gr, Pr)/®>  for 10° < Gr; Pr < 10% [7-42]

In these equations all properties except B are evaluated at atemperature 7, defined by
T, =Ty —0.25(Ty — Tno)

and T, isthe average wall temperature related, as before, to the heat flux by

h=—"
Ty — Tro

The Nusselt number isformed as before:

— KL guwlL
Tk (Ty—Tx)k

Section 7-7 discusses an extension of these equations to inclined surfaces.

Irregular Solids

There is no genera correlation which can be applied to irregular solids. The results of
Reference 77 indicate that Equation (7-25) may be used with C =0.775 and m = 0.208 for
avertical cylinder with height equal to diameter. Nusselt and Grashof numbersare evaluated
by using the diameter as characteristic length. Lienhard [ 78] offers a prescription that takes
the characteristic length as the distance a fluid particle travels in the boundary layer and
usesvaluesof C =0.52and m = %1 in Equation (7-25) in the laminar range. This may serve
as an estimate for calculating the heat-transfer coefficient in the absence of specific infor-
mation on a particular geometric shape. Bodies of unity aspect ratio are studied extensively

in Reference 81.
Cube Cooling n A

A cube, 20 cm on aside, ismaintained at 60°C and exposed to atmospheric air at 10°C. Calculate
the heat transfer.

B Solution
Thisisan irregular solid so we use the information in the last entry of Table 7-1 in the absence of
a specific correlation for this geometry. The properties were evaluated in Example 7-2 as
B=325x10"3 k=0.02685
v=1747x107% Pr=07

The characteristic length isthe distance aparticle travel sin the boundary layer, whichis L /2 along
the bottom plus L aong the side plus L /2 on the top, or 2L = 40 cm. The Gr Pr product is thus:

(9.8)(3.25 x 1073)(60 — 10)(0.4)3
(17.47 x 10-6)2

GrPr= (0.7) =2.34 x 108

From thelast entry in Table 7-1 wefind C = 0.52 and n = 1/4 and cal cul ate the Nusselt number as
Nu=(0.52)(2.34 x 10%)1/4 =64.3
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Figure 7-7 | Coordinate
system for inclined plates.

Heated surface

7-7 Free Convection from Inclined Surfaces

and 64.3)(0.02685
_ AIOO0D8) _ ) 55 wym?.oc

= k
h=Nu—
L (0.9

The cube has six sides so the areais 6(0.2)2 = 0.24 m? and the heat transfer is

q=hA(Ty — Tro) = (4.32)(0.24)(60 — 10) =51.8 W

7-7 1 FREE CONVECTION FROM
INCLINED SURFACES

Extensive experiments have been conducted by Fujii and Imura [44] for heated platesin
water at various angles of inclination. The angle that the plate makes with the vertical is
designated 6, with positive angles indicating that the heater surface faces downward, as
shown in Figure 7-7. For the inclined plate facing downward with approximately constant
heat flux, the following correlation was obtained for the average Nusselt number:

Nu, = 0.56(Gr, Pr, cos®)/* 6 <88°; 10° < Gr, Pr, cos6 < 10 [7-43)]
In Equation (7-43) all properties except B are evaluated at a reference temperature 7,

defined by
T, =T, —0.25(T, — Tso) [7-44]

where T, isthemean wall temperatureand T, isthefree-stream temperature; 8 isevauated
at atemperature of T + 0.50(Ty, — Too). For almost-horizontal plates facing downward,
that is, 88° < 6 < 90°, an additional relation was obtained as

Nu, =0.58(Gr, Pr,)¥®>  10% < Gr, Pr, < 10% [7-45]

For an inclined plate with heated surface facing upward the empirical correlations
become more complicated. For angles between —15 and —75° a suitable correlation is

Nu, = 0.14[(Gr, Pr,)'/3 — (Gr, Pr,)*/3] + 0.56(Gr, Pr, cos6)*/* [7-46]

for the range 10° < Gr, Pr, cos6 < 101, The quantity Gr. is a critical Grashof relation

indicating when the Nusselt number startsto separate from the laminar relation of Equation
(7-43) and is given in the following tabul ation:

0, degrees Gre
—-15 5x 10°
-30 2 x 10°
—60 108
-75 108

For Gr, < Gr, the first term of Equation (7-46) is dropped out. Additiona information is
given by Vliet [39] and Pera and Gebhart [45]. There is some evidence to indicate that the
above relations may also be applied to constant-temperature surfaces.

Experimental measurements with air on constant-heat-flux surfaces [51] have shown
that Equation (7-31) may be employed for thelaminar region if wereplace Gr}: by Gr’ coso
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for both upward- and downward-facing heated surfaces. In the turbulent region with air,
the following empirical correlation was obtained:

Nu, =0.17(Gr* P4 10 < Gr* Pr < 10% [7-47)

where the Gr} is the same as for the vertical plate when the heated surface faces upward.
When the heated surface faces downward, Gr} is replaced by Gr* cos? 6. Equation (7-47)
reduces approximately to the relation recommended in Table 7-1 for an isothermal
vertical plate.

For inclined cylindersthe data of Reference 73 indicate that laminar heat transfer under
constant-heat-flux conditions may be cal culated with the following relation:

Nuj, = [0.60 — 0.488(sin6)>%|(Gr, Pr)i+2ENOY™  for Gr, Pr<2x 108 [7-48]

where6 isthe anglethe cylinder makeswith the vertical; that is, 0° correspondsto avertica
cylinder. Properties are evaluated at the film temperature except 8, which is evaluated at
ambient conditions.

Uncertainties still remain in the prediction of free convection from inclined surfaces,
and an experimental-data scatter of & 20 percent is not unusual for the empirical relations
presented above.

7-8 | NONNEWTONIAN FLUIDS

When the shear-stress viscosity relation of the fluid does not obey the simple newtonian
expression of Equation (5-1), the above equations for free-convection heat transfer do not
apply. Extremely viscouspolymersand lubricants are examples of fluidswith nonnewtonian
behavior. Successful analytical and experimental studies have been carried out with such
fluids, but theresults are very complicated. Theinterested reader should consult References
48 to 50 for detailed information on this subject.

7-9 | SIMPLIFIED EQUATIONSFOR AIR

Simplified equations for the heat-transfer coefficient from various surfaces to air at atmo-
spheric pressure and moderate temperatures are given in Table 7-2. These relations may be
extended to higher or lower pressures by multiplying by the following factors:

» 1/2
( > for laminar cases

101.32

2/3
P
( 1013 2> for turbulent cases

where p isthe pressurein kilopascals. Due caution should be exercised in the use of these
simplified relations because they are only approximations of the more precise equations
stated earlier.

The reader will note that the use of Table 7-2 requires a knowledge of the value of
the Grashof-Prandtl number product. This might seem to be self-defeating, in that another
calculation is required. However, with a bit of experience one learns the range of Gr Pr to
be expected in various geometrical-physical situations, and thus the simplified expressions
can be an expedient for quick problem solving. As we have noted, they are not a substitute
for the more comprehensive expressions.
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7-10 Free Convection from Spheres

Table 7-2 | Simplified equations for free convection from various surfaces to air
at atmospheric pressure, adapted from Table 7-1.

Laminar, Turbulent,
Surface 10* < Gr gPr y <10° Gr gPr p > 10°
AT\ /4
Vertical plane or cylinder h=1.42<7> h=13LAT)Y/3
AT\ /4
Horizontal cylinder h=132 <7> h=124AT)Y/3
Horizontal plate:
AT\ L4
Heated plate facing upward or h=1.32<—) h=152(AT)/3
cooled plate facing downward L
AT\ V4
Heated plate facing downward or h=0.59 (—)
cooled plate facing upward L
AT L4
Heated cube; L = length of h=1.052 (—)
side, Area= 612 L

where 1 = heat-transfer coefficient, W/m? - °C
AT =Ty — T, °C
L = vertical or horizontal dimension, m
d = diameter, m

Calculation with Simplified Relations

Compute the heat transfer for the conditions of Example 7-5 using the simplified relations of
Table 7-2.

B Solution

In Example 7-5 wefound that arather large pipe with asubstantial temperature difference between
the surface and air still had a Gr Pr product of 1.57 x 108 < 109, so alaminar equation is selected
from Table 7-2. The heat-transfer coefficient is given by

1/4 _ 1/4
h=132 AT = 1LE2 20— 15
d 0.3048

=6.96 W/m2.°C

The heat transfer isthen
% — (6.96)7(0.3048) (250 — 15) = 1.57 KW/m

Notethat the simplified relation givesaval ue approximately 4 percent higher than Equation (7-25).

7-10 | FREE CONVECTION FROM SPHERES

Yuge [5] recommends the following empirical relation for free-convection heat transfer
from spheresto air:

hd
Nuy =15 =2+0392 Gr{*  for1<Grs<10° [7-49]
; .

This equation may be modified by the introduction of the Prandtl number to give
Nu; =2+ 0.43(Gr s Prp)Y/4 [7-50]
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Properties are evaluated at the film temperature, and it is expected that this relation would
be primarily applicableto calculationsfor free convection in gases. However, inthe absence
of more specific information it may also be used for liquids. We may note that for very low
values of the Grashof-Prandtl number product the Nusselt number approaches a value of
2.0. Thisisthevaluethat would be obtained for pure conduction through an infinite stagnant
fluid surrounding the sphere, as obtained from Table 3-1.

For higher ranges of the Rayleigh number the experiments of Amato and Tien [79]
with water suggest the following correlation:

Nu s =2+ 0.50(Gr Pr)Y/4 [7-51]

for 3 x 10° < Gr Pr <8 x 108
Churchill [83] suggests a more general formula for spheres, applicable over a wider
range of Rayleigh numbers:

0.589Ra, /4
[1+ (0.469/Pr)9/16]4/9

Nu=2+ [7-52]

for Ray < 101 and Pr > 0.5.

7-11 | FREE CONVECTION IN ENCLOSED SPACES

The free-convection flow phenomenainside an enclosed space are interesting examples of
very complex fluid systemsthat may yield to analytical, empirical, and numerical solutions.
Consider the system shown in Figure 7-8, where afluid is contained between two vertical
plates separated by the distance §. Asatemperature difference AT,, = T1 — T> isimpressed
on the fluid, a heat transfer will be experienced with the approximate flow regions shown
in Figure 7-9, according to MacGregor and Emery [18]. In this figure, the Grashof number

Figure 7-9 | Schematic diagram and flow regimes for the vertical convection layer,
according to Reference 18.
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7-11 Free Convection in Enclosed Spaces

iscaculated as
_ 8B(11—Tp)5°

Grs 5

[7-53]

Vv

At very low Grashof numbers, there are very minute free-convection currents and the heat
transfer occurs mainly by conduction across the fluid layer. As the Grashof number is
increased, different flow regimesare encountered, asshown, with aprogressively increasing
heat transfer as expressed through the Nusselt number

Nus = —
Tk

Although some open questions still remain, the experiments of Reference 18 may be used
to predict the heat transfer to a number of liquids under constant-heat-flux conditions. The
empirical correlations obtained were:

—0.30
L
Nus = 0.42(Grs Pr)Y/4pr0012 (§> gw = const [7-54]
10* < Grg Pr < 107
1 < Pr < 20,000
10< L/5<40

Nus =0.46 (Grs Pn)Y/® ¢, = const [7-55]
10° < Gr; Pr < 10°
1<Pr<20
1<L/5<40

The heat flux is calculated as
k
% = qu=h(T1~T2) = Nuy(Ty = T2) [7-56]

Theresultsare sometimes expressed inthe alternate form of an effective or apparent thermal
conductivity k., defined by

q -1
Z =k 7-5
=k [7-57]
By comparing Equations (7-56) and (7-57), we see that
k
Nus = f [7-58]

In the building industry the heat transfer across an air gap is sometimes expressed in
terms of the R values (see Section 2-3), so that

qg AT

A R
In terms of the above discussion, the R value would be
R=— 7-59
I [7-59]

Heat transfer in horizontal enclosed spacesinvolvestwo distinct situations. |f the upper
plate is maintained at a higher temperature than the lower plate, the lower-density fluid is
above the higher-density fluid and no convection currents will be experienced. In this case
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Figure 7-10 | Benard-cell pattern in enclosed fluid layer heated
from below, from Reference 33.

WA
<L <
A/'/\\//v_> ,//\
</ N </ Cold

R N A

the heat transfer across the space will be by conduction alone and Nus = 1.0, where § is
still the separation distance between the plates. The second, and more interesting, case is
experienced when the lower plate has a higher temperature than the upper plate. For values
of Grs below about 1700, pure conduction is still observed and Nus = 1.0. As convection
begins, a pattern of hexagonal cellsis formed as shown in Figure 7-10. These patterns are
called Benard cells[33]. Turbulence begins at about Grs = 50,000 and destroysthe cellular
pattern.

Free convection in inclined enclosuresis discussed by Dropkin and Somerscales[12].
Evans and Stefany [9] have shown that transient natural-convection heating or cooling in
closed vertical or horizontal cylindrical enclosures may be calculated with

Nu s = 0.55(Gr s Pr )4 [7-60]

for the range 0.75 < L/d < 2.0. The Grashof number is formed with the length of the
cylinder L.

The analysis and experiments of Reference 43 indicate that it is possible to represent
the effective thermal conductivity for fluids between concentric spheres with the relation

% =0.228(Grs Pr)0-2% [7-61]

where now the gap spacing is § =r, —r;. The effective thermal conductivity given by
Equation (7-61) is to be used with the conventional relation for steady-state conduction in
aspherical shell:

= Arck,riro AT [7-62]
Fo—ri
Equation (7-61) isvalid for 0.25 <§/r; <1.5and
1.2x10°<GrPr<11x10°  0.7<Pr <4150
Properties are evaluated at a volume mean temperature 7,,, defined by
3_.3 3_.3
—rdT; — 3T,
Tm:(rm rz) ;—’_(20 rm) 4 [7-63]
o =T

where r,, = (r; +1,)/2. Equation (7-61) may aso be used for eccentric spheres with a
coordinate transformation as described in Reference 43.

Experimental results for free convection in enclosures are not always in agreement,
but we can expressthem in ageneral form as

ke L\"
©=CGr P <§) [7-64]
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Table 7-3 | Summary of empirical relations for free convection in enclosures in the form of Equation (7-61), correlation constants

adjusted by Holman [74].
. L
Fluid Geometry Grg Pr Pr 3 c n m Reference(s)
Gas Vertical plate, <2000 ke/k=1.0 6,7, 55,59
isothermal 6000-200,000 05-2 11-42 0.197 : -3
200,000-1.1 x 107 05-2 11-42 0.073 3 -3
Horizontal plate, <1700 ke/k=1.0
isothermal 1700-7000 05-2 — 0.059 0.4 0 6,7, 55, 59, 62, 63
heated from
below 7000-3.2 x 10° 0.5-2 — 0.212 i 66
>3.2x10° 0.5-2 — 0.061 3
Liquid Vertical plate, < 2000 ke/k=1.0
constant heat 10%-107 1-20,000 10-40 Eq. 7-52 — — 18, 61
flux or isothermal 108-10° 1-20 1-40 0.046 3 0
Horizontal plate, <1700 ke/k=1.0 — 7, 8,58, 63, 66
isothermal, 1700-6000 1-5000 — 0.012 0.6 0
heated from 6000-37,000 1-5000 — 0.375 0.2 0
below 37,000-108 1-20 0.13 03 0
>108 1-20 0.057 3 0
Gasor Vertical annulus Same as vertical
liquid plates
Horizontal annulus, 6000-10° 1-5000 — 0.11 0.29 0 56, 57, 60
isothermal 106108 1-5000 — 0.40 0.20 0
Spherical annulus 120-1.1 x 10° 0.7-4000 — 0.228 0.226 0 43

Table 7-3 lists values of the constants C, n, and m for anumber of physical circumstances.
Thesevaluesmay be used for design purposesin the absence of specific datafor thegeometry
or fluid being studied. We should remark that some of the data correlations represented by
Table 7-3 have been artificially adjusted by Holman [ 74] to give the characteristic exponents
of 711 and % for the laminar and turbulent regimes of free convection. However, it appears
that theerror introduced by thisadjustment isnot significantly greater than the disagreement
between different experimental investigations. The interested reader may wish to consult
the specific references for more details.
For the annulus space the heat transfer is based on

_ 2nk,LAT
B In(r,/r;)

where L isthe length of the annulus and the gap spacingisé=r, —r;.

Extensive correlations for free convection between cylindrical, cubical, and spherical
bodies and various enclosure geometries are given by Warrington and Powe [80]. The
correlations cover awide range of fluids.

Free convection through vertical plane layers of nonnewtonian fluids is discussed in
Reference 38, but the results are too complicated to present here.

In the absence of more specific design information, the heat transfer for inclined enclo-
sures may be calculated by substituting g’ for g in the Grashof number, where

g =gcoso [7-66]

q [7-65]

and 6 is the angle that the heater surface makes with the horizontal. This transformation
may be expected to hold up to inclination angles of 60° and applies only to those cases
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where the hotter surface is facing upward. Further information is available from Hollands
et a. [66, 67, 69, 82].

Radiation R-Valuefor a Gap

As we have seen in conduction heat transfer, radiation boundary conditions may play
an important role in the overall hest-transfer problem. This is particularly true in free-
convection situations because free-convection heat-transfer rates are typically small. We
will show in Section 8-7, Equation (8-42), that the radiant transfer across a gap separating
two large parallel planes may be calculated with

_ o(if-13)
C ler+1/ea—1

where the temperatures are in degrees Kelvin and the €'s are the respective emissivities of
the surfaces. Using the concept of the R-value discussed in Section 2-3, we could write

(q/A)rad = AT/ Rrad

q/A [7-67]

and thus could determine an R-vaue for the radiation heat transfer in conjunction with
Equation (7-67). That value would be strongly temperature-dependent and would operatein
parallel with the R-valuefor the convection across the space, which could be obtained from

(g/A)corv =k AT/8 = AT/ Reony

so that
RCOI’\V = 8/ ke

The total R-value for the combined radiation and convection across the space would be

written as
1

1/Rrag + 1/Rconv

The concept of combined radiation and convection in confined spacesisimportant in build-
ing applications.

Heat Transfer Across Vertical Air Gap

Air at atmospheric pressure is contained between two 0.5-m-square vertical plates separated by a
distance of 15 mm. The temperatures of the plates are 100 and 40°C, respectively. Calculate the
free-convection heat transfer across the air space. Also calculate the radiation heat transfer across
the air space if both surfaces have e = 0.2.

Riot =

B Solution
We evaluate the air properties at the mean temperature between the two plates:
100+ 40
Ty = ;_ =70°C=343K

1.0132 x 10°
p_10182x10° ) g kg/m?

P=RT = (287)(343)
1_1 —l ol
=~ =~ —20915x10 3K
P=7, .

/VL:2.043><1075 kg/m-s k=0.0295 W/m-°C Pr=0.7
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7-11 Free Convection in Enclosed Spaces

The Grashof-Prandtl number product is now calculated as

(9.8)(1.029)2(2.915 x 10~3)(100 — 40)(15 x 10~3)3 07

Grg Pr =
s (2.043 x 10-5)2

—1.027 x 10*

We may now use Equation (7-64) to calculate the effective thermal conductivity, with L =0.5m,
8 =0.015 m, and the constants taken from Table 7-3:

ke 41ja( 05\

= (0.197)(1.027 x 10™) 0.015 =1343
The heat transfer may now be calculated with Equation (7-54). The area is (0.5)2=0.25 m?,

so that
4= (1.343)(0.0295) (0.25) (100 — 40)

0.015

The radiation heat flux is calculated with Equation (7-67), taking Tp = 373 K, 7> =313 K, and
€1 =¢€2=0.2. Thus, with o = 5.669 x 10~8 W/m? - K*,
(5.669 x 10~8)(373% — 313%)

_ _ 2
@Al =057 102-1] = 61.47 W/m

=39.62 W [135.2 Btu/h]

and
drad = (0.5)%(61.47) = 15.37 W

or about half the value of the convection transfer across the space. Further cal cul ation would show
that for asmaller value of e = 0.05, the radiation transfer isreduced to 3.55 W or, for alarger value
of €=0.8, the transfer is 92.2 W. In any event, radiation heat transfer can be an important factor
in such problems.

Heat Transfer Across Horizontal Air Gap

Two horizontal plates 20 cm on a side are separated by a distance of 1 cm with air at 1 atm in
the space. The temperatures of the plates are 100°C for the lower and 40°C for the upper plate.
Calculate the heat transfer across the air space.

H Solution
The properties are the same as given in Example 7-8:
p=1029kg/m3 B=2915x10 K1
pn=2043x10"°kg/m-s  k=0.0295W/m-°C
Pr=0.7

The Gr Pr product is evaluated on the basis of the separating distance, so we have

_(9.8)(1.029)2(2.915 x 10~3)(100 — 40)(0.01)3

Gr Pr
(2.043 x 10-5)2

(0.7) = 3043
Consulting Table 7-3, we find C = 0.059, n = 0.4, and m = 0 so that

ke 0a(02\° 1

and
_ keA(T1—T2)  (1.460)(0.0295)(0.2)%(100 — 40)

=10.34W
8 0.01
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Heat Transfer Across Water Layer

Two 50-cm horizontal sguare plates are separated by a distance of 1 cm. The lower plate is
maintained at a constant temperature of 100°F and the upper plate is constant at 80°F. Water at
atmospheric pressure occupies the space between the plates. Calculate the heat lost by the lower
plate.

B Solution
We eval uate properties at the mean temperature of 90°F and obtain, for water,

k=0.623W/m-°C =2.48 x 1010

gBo’cp
k

The Grashof-Prandtl number product is now evaluated using the plate spacing of 1 cm as the
characteristic dimension.

Gr Pr = (2.48 x 1019)(0.01)3(100 — 80)(5/9) = 2.76 x 10°

Now, using Equation (7-64) and consulting Table 7-3 we obtain
C=0.13 n=0.3 m=0

Therefore, Equation (7-64) becomes

€

k
© =(013)276x 10°)93 =557

The effective thermal conductivity is thus
ke = (0.623)(5.57) =3.47 W/m-°C

and the heat transfer is

(3.47)(0.5)2(100 — 80)(5/9)

=964 W
0.01

g=keAAT/S =

We see, of course, that the heat transfer across a water gap is considerably larger than for an air
gap [Example 7-9] because of the larger thermal conductivity.

Reduction of ConvectioninAir Gap

A vertical air gap between two glass plates is to be evacuated so that the convective currents are
essentially eliminated, that is, the air behaves as a pure conductor. For air at a mean temperature
of 300 K and atemperature difference of 20°C, cal culate the vacuum necessary for glass spacings
of 1and 2 cm.

B Solution
Consulting Table 7-3, we find that for gases, avalue of Grs Pr < 2000 is necessary to reduce the
system to one of pure conduction. At 300 K the propertiues of air are

k=002624W/m-°C Pr=07 =1846x10"kg/m-s B=1/300
and
p=p/RT = p/(287)(300)
We have
Grs Pr = gBp2 ATS3Pr/u2 = 2000
= (9.8)(1/300)[ p/(287)(300)]2(20)63(0.7)/(1.846 x 10 °)2
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and p253 = 7773. Therefore, for aplate spacing of § = 1 cm we have
p=[7773/(0.01)311/2 = 88200 Pa
or, vacuum = pgm — p = 101320 — 88200 = 13120 Pa. For a spacing of 2 cm,
p = 31190 Pa and vacuum = 70130 Pa

Both vacuum figures are modest and easily achieved in practice.

Evacuated (L ow-Density) Spaces

In the equations presented for free convection in enclosures we have seen that when the
product Grs Pr issufficiently small, usually less than about 2000, the fluid layer behaves as
if pure conduction wereinvolved and k. / k — 1.0. This meansthat the free-convection flow
velocities are small. A small value of Grs can result from either lowering the fluid pressure
(density) or by reducing the spacing §. If the pressure of a gas is reduced sufficiently, we
refer to the situation as alow-density problem, which is influenced by the mean free path
of the molecules and by individual molecular impacts.

A number of practical situations involve heat transfer between a solid surface and a
low-density gas. In employing the term low density, we shall mean those circumstances
where the mean free path of the gas molecules is no longer small in comparison with a
characteristic dimension of the heat-transfer surface. The mean free path A is the distance
a molecule travels, on the average, between collisions. The larger this distance becomes,
the greater the distance required to communicate the temperature of a hot surface to a gas
in contact with it. This means that we shall not necessarily be able to assume that agasin
the immediate neighborhood of the surface will have the same temperature as the heated
surface, as was done in the boundary-layer analyses. Evidently, the parameter that is of
principal interest is aratio of the mean free path to a characteristic body dimension. This
grouping is called the Knudsen number,

Kn=Z 7-
n I [7-68]

According to the kinetic theory of gases, the mean free path may be calculated from

0.707
=0
4r2n

[7-69]

where r is the effective molecular radius for collisions and # is the molecular density. An
approximate relation for the mean free path of air moleculesis given by

T
A =227 x 10>~ meters [7-70]
p

where T isin degrees Kelvin and p isin pascals.

As afirst example of low-density heat transfer let us consider the two paraldl infi-
nite plates shown in Figure 7-11. The plates are maintained at different temperatures and
separated by a gaseous medium. Let us first consider a case where the density or plate
spacing is low enough that free convection effects are negligible, but with a gas density
sufficiently high so that » — 0 and a linear temperature profile through the gas will be
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Figure 7-11 | Effect of mean free path on conduction heat transfer between parallel
plates: (a) physical model; (b) anticipated temperature profiles.
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experienced, as shown for the case of 1. As the gas density is lowered, the larger mean
free paths require a greater distance from the heat-transfer surfacesin order for the gas to
accommodate to the surface temperatures. The anticipated temperature profiles are shown
in Figure 7-11b. Extrapolating the straight portion of the low-density curves to the wall
produces a temperature “jump” AT, which may be calculated by making the following
energy balance:

g_p -l AT [7-71]
A g+L+g g
In this equation we are assuming that the extrapolation distance g isthe same for both plate
surfaces. In general, the temperature jump will depend on the type of surface, and these
extrapolation distances will not be equal unless the materials are identical. For different
types of materials we should have

355



356

7-11 Free Convection in Enclosed Spaces

Tn—T; AT AT;
T2 Sl 22 [7-72]
A g1+L+g 81 g2

wherenow ATj and AT, arethetemperature jumps at the two heat-transfer surfacesand g1
and g» are the corresponding extrapolation distances. For identical surfacesthe temperature
jump would then be expressed as

8
2g+L

AT = (T1 —Tr) [7-73]

Similar expressionsmay bedevel oped for low-density conduction between concentric cylin-
ders. In order to predict the heat-transfer rate it is necessary to establish relations for the
temperature jump for various gas-to-solid interfaces.

We have already mentioned that the temperature-jump effect arises as a result of the
failure of the moleculesto “accommodate” to the surface temperature when the mean free
path becomes of the order of acharacteristic body dimension. The parameter that describes
this behavior is called the accommodation coefficient «, defined by

_ Ei—E

o= ———
Ei_Ew

[7-74]

where

E; = energy of incident molecules on a surface
E, = energy of molecules reflected from the surface
E ., = energy molecules would have if they acquired energy of wall at temperature T,

Values of the accommaodation coefficient must be determined from experiment, and some
typical values are given in Table 7-4.

Itis possible to employ the kinetic theory of gases along with values of « to determine
the temperature jump at a surface. The result of such an analysisis

2—a 2y 1 OT
Ty—o—Ty=
y=0

7-75
a y+1Pr 9y [ ]

Table 7-4 | Thermal accommodation coefficients
for air at low pressure in contact with
various surfaces.

Accommodation

Surface coefficient, o
Flat black lacquer on bronze 0.88-0.89
Bronze, polished 0.91-0.94

Machined 0.89-0.93

Etched 0.93-0.95
Cast iron, polished 0.87-0.93

Machined 0.87-0.88

Etched 0.89-0.96
Aluminum, polished 0.87-0.95

Machined 0.95-0.97

Etched 0.89-0.97
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Figure 7-12 | Nomenclature for use with
Equation (7-75).

|TW |Ty:0

The nomenclature for Equation (7-75) is noted in Figure 7-12. This temperature jump is
denoted by AT in Figure 7-11, and the temperature gradient for use with Figure 7-11
would be
Ty — T — 2AT
L

For very low densities (high vacuum) the mean free path may become very large
compared to the plate separation distance and the conduction-convection heat transfer will
approach zero. The reader should recognize, however, that the total heat transfer across
the gap-space will be the sum of conduction-convection and radiation heat transfer. We
will discuss radiation heat transfer in detail in Chapter 8, but we have aready provided
therelation in Equation (7-67) for calculation of radiant heat transfer between two parallel
plates. We note that € approaches 1.0 for highly absorptive surfaces and has a small value
for highly reflective surfaces. Example 7-12 illustrates the application of the low-density
relations to calculation of heat transfer across a gap.

Heat Transfer Across Evacuated Space

Two polished-aluminum plates (e = 0.06) are separated by adistance of 2.5cmin air at a pressure
of 10~% atm. The plates are maintained at 100 and 30°C, respectively. Calculate the conduction
heat transfer through the air gap. Compare this with the radiation heat transfer and the conduction
for air at normal atmospheric pressure.

H Solution
We first calculate the mean free path to determine if low-density effects are important. From
Equation (7-70), at an average temperature of 65°C =338 K,
_ (2.27x107°)(338)
"~ (1.0132 x 10+5)(10-6)

=0.0757 m=7.57cm [0.248 ft]
Since the plate spacing is only 2.5 cm, we should expect low-density effects to be important.
Evaluating properties at the mean air temperature of 65°C, we have
k=0.0291 W/m-°C [0.0168 Btu/h-ft- °F]
y =140 Pr=0.7 a~0.9 from Table 7-4

Combining Equation (7-75) with the central-temperature-gradient relation gives
2— 2 T1—T> — 2AT
AT_2"% % A T1—Tp
a y+1Pr L
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Inserting the appropriate properties gives
2—0.9280.0757 100 — 30 — 2AT

09 24 07 0.025
—3238°C  [58.3°F]

AT =

The conduction heat transfer is thus
q4_, Ty — T, —2AT _ (0.0291)(70 — 64.76)
A L 0.025

= 6.099 W/m? [1.93 Btu/h- ft?]

At normal atmospheric pressure the conduction would be

W —T:
% = lez —81.48W/m? [25.8 Btu/h- ft?]
The radiation heat transfer is calculated with Equation (8-42), taking €1 = €2 = 0.06 for polished
aluminum:

2/e—1 2/0.06—1
=27.05W/m? [8.57 Btu/h-ft?]

( q ) _o(Tf—T)) _ (5669x 10-8)(393* — 303%)
rad

Thus, at the low-density condition the radiation heat transfer is almost 5 times as large as the
conduction, even with highly polished surfaces.

7-12 | COMBINED FREE AND FORCED
CONVECTION

A number of practical situations involve convection heat transfer that is neither “forced”
nor “free” in nature. The circumstances arise when afluid isforced over a heated surface at
arather low velocity. Coupled with the forced-flow velocity is a convective velocity that is
generated by the buoyancy forces resulting from areduction in fluid density near the heated
surface.

A summary of combined free- and forced-convection effects in tubes has been given
by Metais and Eckert [10], and Figure 7-13 presents the regimes for combined convection
invertical tubes. Two different combinations are indicated in thisfigure. Aiding flow means
that the forced- and free-convection currents are in the same direction, while opposing flow
means that they are in the opposite direction. The abbreviation UWT means uniform wall
temperature, and the abbreviation UHF indicates data for uniform heat flux. It isfairly easy
to anticipate the qualitative results of the figure. A large Reynolds number implies alarge
forced-flow velocity, and hence less influence of free-convection currents. The larger the
value of the Grashof-Prandtl product, the more one would expect free-convection effects
to prevail.

Figure 7-14 presents the regimes for combined convection in horizontal tubes. In this
figure the Graetz number is defined as

d
Gz=RePr - [7-76]

The applicable range of Figures 7-13 and 7-14 isfor

1072 <Pr (%) <1
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Figure 7-13 | Regimes of free, forced, and mixed convection for flow through vertical tubes,
according to Reference 10.
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The correlations presented in the figures are for constant wall temperature. All properties
are evaluated at the film temperature.

Brown and Gauvin [17] have developed a better correlation for the mixed-convection,
laminar flow region of Figure 7-14:

0.14
Nu=175 <&) [Gz 4 0.012(Gz Grl/3)4/3)1/3

Hw

[7-77]

where u, is evaluated at the bulk temperature. This relation is preferred over that shown
in Figure 7-14. Further information is available in Reference 68. The problem of com-
bined free and forced convection from horizontal cylindersistreated in detail by Fand and
Keswani [47].

Criterion for Freeor Forced Convection

The general notion that isapplied in combined-convection analysisisthat the predominance
of a heat-transfer mode is governed by the fluid velocity associated with that mode. A
forced-convection situation involving a fluid velocity of 30 m/s, for example, would be
expected to overshadow most free-convection effects encountered in ordinary gravitational
fields because the velocities of the free-convection currents are small in comparison with
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360 7-12 Combined Free and Forced Convection

Figure 7-14 | Regimes of free, forced, and mixed convection for flow through horizontal tubes, according to
Metais and Eckert [10].
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30 m/s. Ontheother hand, aforced-flow situation at very low velocities (~ 0.3m/s) might be
influenced appreciably by free-convection currents. An order-of-magnitude analysis of the
free-convection boundary-layer equations will indicate a general criterion for determining
whether free-convection effects dominate. The criterion is that when

Gr/Re? > 10 [7-78]

free convection is of primary importance. This result is in agreement with Figures 7-13
and 7-14.

EXAMPLE 7-13 Combined Free and Forced Convection with Air

Airat 1atmand 27°Cisforced through ahorizontal 25-mm-diameter tube at an average velocity of
30cm/s. Thetubewall ismaintained at aconstant temperature of 140° C. Cal cul atethe heat-transfer
coefficient for this situation if the tube is 0.4 m long.

B Solution
For this calculation we evaluate properties at the film temperature:

140 4 27
Ty= TJF =83.5°C=356.5K
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p  10132x 10°

= —-—-————— . 3
= RT ~ @8 @565 Pk

of
B= T—lf =2805x103K1 4, =2337x10"2kg/m-s
pr=2102x10°kg/m-s  ky=00305W/m-°C  Pr=0.695
Let us take the bulk temperature as 27°C for evaluating w,; then
= 1.8462 x 107° kg/m- s

The significant parameters are calculated as

oud  (0.99)(0.3)(0.025)
= T 353
“w 2.102 x 10-5

_ P%gB(Tw — Tp)d>  (0.99)%(9.8)(2.805 x 10~3)(140 — 27)(0.025)°
- u? - (2.102 x 10—5)2

—1.007 x 10°

REf

Gr

0.025

d (1.077 x 10°)(0.695)

.0
GrPr— = =4677
L 0.4

According to Figure 7-14, the mixed-convection-flow regime is encountered. Thus we must use
Equation (7-77). The Graetz number is calculated as

Gz— RePr % _ (353) (0.292)(0.025) _ 1533

and the numerical calculation for Equation (7-77) becomes

1.8462

Nu=175( 2o
. ( 2,337

0.14
) {15.33 4 (0.012)[(15.33)(1.077 x 10°)1/3]4/3)1/3
=770

The average heat-transfer coefficient isthen calculated as

_ k& 0.0305)(7.70
7= Ky QOD70)

= Ze ft2 o
d o0 =240W/m?.°C [167Btu/h-ft* - °F]

It isinteresting to compare this value with that which would be obtained for strictly laminar forced
convection. The Sieder-Tate relation [Equation (6-10)] applies, so that

0.14 13
Nu = 1.86(Re Pr)1/3 (ﬂ> <d>

Hw L
0.14
—1.86Gz1/3 (ﬂ>
Hw
2102\ 214
— (1.86)(15.33)1/3 ( =2
(1.86)(15.33) (2.337)
— 455
and
(4.55)(0.0305)

h= =5.55W/m?.°C [0.977 Btu/h- ft?- °F]

0.025

Thus there would be an error of —41 percent if the calculation were made strictly on the basis of
laminar forced convection.
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7-14 Summary Procedure for All Convection Problems

Table 7-5 | Summary of free-convection heat-transfer relations 7'. For most cases, properties are evaluated at 7y = (T + Too) /2.

Geometry Equation Restrictions Equation number
A variety of Nuy = C(Gry Prp™ See Table 7-1 (7-25)
isothermal surfaces C and m from Table 7-1
Vertical Nu"2 0825+ o OTREL ) 101 <Ra <1012 (7-29)
isothermal surface AIsoseeFig. 7-5
Vertical surface, constant Nuy s = C(GriPr )™ € =0.60,m = £ for 10° < GriPr < 101 (7-31)
heat flux, local A C=0.17,m = } for 2x 1013 < Gr*Pr < 1016 (7-32)
1/6
Nil/2 GrPr -5 13
| sothermal N =060+0387) — 2T s 10 GrPr <10 7-36
Sohorizn(;ntal cylinders ! " [1+(0.559/Pr) 9/ 0116/ - : - ( )
y Also see Fig. 7-6
Horizontal surface, See text (7-39) to (7-42)
constant heat flux
Inclined surfaces Section 7-7 See text
Spheres Nu =2+ 0.43(Gr Pr)1/4 1<GrPr<10° (7-50)
Nu=2+0.5(Gr Pr)1/4 water, 3 x 10° < Gr Pr < 8 x 10® (7-51)
0.589(Gr P /4
Nu=2+ M%;/W 05<Pr (7-52)
GrPr <101
Enclosed spaces q=keA(AT/S) Constants C, m, and n from Table 7-3 (7-57) (7-64)

Across evacuated spaces

’% =C(GrgP)™ (L/8)™ Pure conduction for Grg Pr < 2000

Most transfer is by radiation

7-13 | SUMMARY

By now the reader will have sensed that there is an abundance of empirical relations for
natural convection systems. Our purposes in this section are to (1) issue a few words of
caution and (2) provide a convenient table to summarize the relations.

Most free-convection data are collected under laboratory conditions in till air, still
water, etc. A practical free-convection problem might not be so fortunate and the boundary
layer could have a dightly added forced-convection effect. In addition, real surfaces in
practice are seldom isothermal or constant heat flux so the correlations developed from
laboratory data for these conditions may not strictly apply. The net result, of course, is that
the engineer must realize that calculated values of the heat-transfer coefficient can vary
=+ 25 percent from what will actually be experienced.

For solution of free-convection problems one should follow a procedure similar to
that given in Chapter 6 for forced-convection problems. To aid the reader, a summary of
free-convection correlationsis given in Table 7-5.

7-14 | SUMMARY PROCEDURE FOR ALL
CONVECTION PROBLEMS

At the close of Chapter 6 we gave a brief procedure for calculation of convection heat
transfer. We now are in a position to expand that discussion to include the possibility of
free-convection exchange. The procedure is as follows:

1. Specify thefluidinvolved and be prepared to determine properties of that fluid. Thismay
seem like atrivial step, but a surprisingly large number of errors are made in practice
by choosing the wrong fluid, that isto say, air instead of water.





