Latest Content
Latest Community Postings
Recent Blog Entries
Community Downloads
ChExpress Blog
Ankur's Tech Blog
Community Admin Blog
Energy Efficient Hot and Cold Water
Electrical Process Tomography
Biodiesel: The Road Ahead
Methanol Plant Capacity Enhancement
Plate and Frame Heat Exchangers: Preliminary Design
Compressor Surging Under Control
Plant and Equipment Wellness, Part 1: Observing Variability

Share this topic:

smalllogo.gif (6368 bytes)

Download a Printable Version Here (Adobe Acrobat Format)

Modeling Urea Processes: A New Thermodynamic Model and Software Integration Paradigm
(Special Shared Content with Virtual Materials Group)

High Pressure Equilibrium

Initially the high-pressure section was modeled using a full ionic model as described by Satyro (8). Albeit the model showed good performance when used to model industrial units, enhancements were possible in terms of computational speed and accuracy with respect to ammonia and carbon dioxide vapor compositions at the outlet of the urea synthesis reactor. The majority of the time spent in thermodynamic calculations was determined to be in the convergence of the ionic chemical equilibrium, and any simplification in that area would have significant impact in the calculation speed, and therefore would allow the use of the model not only for steady state calculations but also dynamic calculations necessary for safety studies and operator training.

The reactive system was simplified by considering all the chemical species in their molecular states. This is not true from a purely physical-chemical point of view, since the reactions happening in the liquid phase at high pressure are well represented by the following reaction system (8):

ureamodeling4a.gif (2406 bytes) (3)
ureamodeling4b.gif (2534 bytes) (4)
ureamodeling4c.gif (2139 bytes) (5)
ureamodeling4d.gif (2696 bytes) (6)
ureamodeling4e.gif (2685 bytes) (7)

The equilibrium constants for the equations above are functions of temperature, and the reaction equilibrium is supposed to be independent of pressure. Therefore, the equilibrium compositions for the several species (molecular and ionic) can be represented as in Equation 8:

ureamodeling5.gif (1712 bytes) (8)

Where the index i represents one of the chemical reactions defined by Equations 1 to 4, x is the composition vector in the liquid phase, T is the liquid phase temperature and the K's on the right of Equation 5 are defined as in Equations 9a and 9b.

ureamodeling6.gif (2616 bytes) (9a)
ureamodeling7.gif (2711 bytes) (9b)

Where ureamodeling7a.gif (887 bytes) is the activity coefficient and ureamodeling7b.gif (877 bytes) is the stoichiometric coefficient for each of the components present in reaction i. 

The calculation of ionic species activity coefficients is somewhat laborious and the details can be found in Satyro (8). Since the chemical equilibrium has to be evaluated at every iteration when calculating liquid phase fugacity coefficients, any reduction in computational load while keeping accuracy will translate into substantial time saving. Therefore, the reaction system defined by Equations 3 to 7 was replaced by the following simplified system:

ureamodeling8a.gif (1885 bytes) (10)
ureamodeling8b.gif (2137 bytes) (11)
ureamodeling8c.gif (1945 bytes) (12)

At equilibrium, the actual composition of the liquid phase will be denoted by z and the equilibrium expression is then given by:

ureamodeling9.gif (1405 bytes) (13)

For convenience we note that the fugacity coefficient in the liquid phase is given by the following:

ureamodeling10.gif (1422 bytes) (14)

Note that even if the solution was ideal from a physical point of view the fugacity coefficient is not unitary unless chemical reactions are not present. This is caused by the fact that the ratio zi / xi will be unitary only and only if the liquid phase does not present chemical reactions. The salts present in solution, ammonium carbamate, urea and ammonium bicarbonate are not present in the vapor phase and therefore have infinitesimal volatility. 

Careful analysis of the performance of different activity coefficient models on the representation of ammonia and water vapor-liquid equilibrium determined the final model used in this study and a 4 suffix Margules expression was determined optimal for our purposes as defined in the equations below:

ureamodeling11a.gif (2364 bytes) (15)
ureamodeling11b.gif (1564 bytes) (16)
ureamodeling11c.gif (1589 bytes) (17)
ureamodeling11d.gif (1612 bytes) (18)

Where dij is a symmetric, temperature independent interaction parameter and aij is defined as:

ureamodeling12.gif (1601 bytes) (19)

Standard state fugacities are determined based on vapor pressures for most components while specially determined standard state fugacities for ammonia and carbon dioxide are used, which are valid from 200 to 500 K. 

High Pressure Data Regression

smalllogo.gif (4001 bytes)

  • Stay up to date on new content
  • Post questions and answers in our forums
  • Access downloads and attachments
  • Read member blogs and start your own blog
  • Connect with members via our friends feature
  • Receive and post status updates