|
Focus on Liquid Flow Measurement
Controlling the flow rate of liquids is a key control mechanism for any chemical plant. There are many different types of devices available to measure flow. Table 1: Comparison of Popular Flow Measurement Devices Head Devices Head type devices measure flow by constricting a stream and measuring the resulting pressure drop. The pressure drop can then be related to a flow. Orifice Plates An orifice plate is a very simple device installed in a straight run of pipe. The orifice plate contains a hole smaller than the pipe diameter. The flow constricts, experiences a pressure drop, and then the differential pressure can be related to a flow.
It is also important to note that relating differential pressure to flow across an orifice depends on the location of the pressure taps in relation to the orifice. In Figure 2 below, the pressure taps are designated as P1 and P2. "D" is the diameter of the pipe and "d" is the diameter of the orifice.
Venturi A venturi tube (also called the Herschel Venturi tube) also measures flow rates by constricting fluids and measuring a differential pressure drop.
Target Flowmeters A target flowmeter operates just as the name implies. A small "bullseye" is placed inside the pipe and is connected to a pneumatic transmitter. Typical applications include flow measurement of steam and outdoor liquids.
Rotometers Rather than using a constant restriction area and a variable pressure differential, rotometers use a variable restriction and a constant pressure differential to measure flow. Typically, rotometers are used to measure smaller flows and the reading is usually done locally, although transmission of the readings is possible.
Velocity Devices Probably the most common velocity device used for
flow measurement is the magnetic flowmeter. Magnetic flowmeters cause no head loss
and they can easily measure liquids with solids in suspension. By their design, they
produce an electrical signal ideal for plant transmission. Another velocity device, which can be used for hydrocarbons, is called a vortex-shedding meter. You can read more about these devices here. Displacement Devices The most common displacement flow-measuring device is the turbine meter. In a turbine meter, a rotor is placed in the flow path. Usually, the rotor is magnetically coupled so that each rotation produces a pulse. The spin of the rotor is proportional to the velocity of the fluid. The turbine meter is highly accurate and durable. Turbine meters are restricted only by the fact that they must be used in clean, noncorrosive services. Other Devices Another type of device worth mentioning is the Coriolis meter which measures flow rates based on the mass of the fluid. Many applications, such as a reactor feed stream, are often specified and best measured by mass. In these applications, using a measuring device based on volume would require corrections for temperature dependent properties such as density and viscosity. The Coriolis meter gives a direct mass flow measurement, independent of temperature and pressure. These devices are remarkable accurate as well (typically 0.2 to 0.02 percent of the total flow).
References: LMNO Engineering, website, http://www.lmnoeng.com Rosaler, Robert C., Handbook of Plant Engineering, McGraw-Hill, New York, 1995, ISBN: 0-07-052164-6 By: Christopher Haslego, Owner and Chief Webmaster (read the author's Profile) |
|