Latest Downloads
-
Water Bath Indirect Heaters
Art Montemayor - Oct 12 2018 02:35 PM
-
Petroleum: A Primer for Kansas
Art Montemayor - Oct 12 2018 02:27 PM
-
Spray Tower for Flue Gas Scrubbing Design
ankur2061 - May 02 2018 02:31 PM
-
Selection of Vertical Tanks
ankur2061 - Apr 19 2018 07:42 AM
-
Pressure Drop Calculator for Strainers 1
ankur2061 - Mar 24 2017 02:04 PM
-
Horizontal Pig Trap System Design Guidelines
ankur2061 - Jan 14 2017 02:54 PM
-
Performance Prediction of 3-Stage Propane Refrigeration System
ankur2061 - Aug 08 2016 02:43 PM
-
Centrifugal Pump Troubleshooting Checklist
ankur2061 - Dec 17 2015 08:18 AM
-
Compressor Troubleshooting Checklist
ankur2061 - Sep 08 2015 11:43 AM
-
Amine Sweetening Unit Preliminary Design
ankur2061 - May 19 2015 09:35 AM
Popular Store Titles
Tank Jacket Calculator
Specification Sheet Collection
PIPESIZE
Relief Valve Sizing
Rupture Disc Sizing
Chemical and Process Engineering Resources
Submitted Chris Haslego, Nov 21 2011 11:21 AM | Last updated Nov 21 2011 01:29 PM
Category: | Fluid Dynamics |
Question: | How can I estimate a gas flow based on two pressure measurements? |
Keywords: | gas,flow,estimation,pressure,drop |
Answer: | You can use the Weymouth equation to estimate the gas flow. Below is the equation. The compressibility should be evaluated at Pavg shown below. Nomenclature is as follows:Q = flow rate, Million Cubic Feet per Day (MCFD)Tb = base Temperature, degrees RankinPb = base pressure, psiaG = gas specific gravity (reference air=1)L = line length, milesT = gas temperature, degrees RankinZ = gas compressibility factorD = pipe inside diameter, in.E = Efficiency factor E=1 for new pipes with no bends E=0.95 for pipe less than a year old E=0.92 for average operating conditions E=0.85 for unfavorable operating conditions |
Images: |
Forum Quick Links
Tech Q & A Category List
-
Bulk Solids
-
ChE Outside the Plant
-
Chemical Process Business
-
Chemistry Basics
-
Corrosion
-
Equipment Design
-
Experimentation and Testing
-
Fluid Dynamics
-
Heat Transfer Technology
-
Industrial Utilities
-
Mass Transfer
-
Physical Property Information
-
Plant Basics
-
Plant Economics
-
Preparing to Become an Engineer
-
Process Control
-
Reactions and Processes
-
Refining
-
Safety
-
Separation Technology
-
The Environment
-
Thermodynamics
0 Comments